1,536 research outputs found
Infrared-ultraviolet spectra of active galactic nuclei
Data from IRAS and IUE were combined with ground based optical and infrared spectrophotometry to derive emission line free spectral energy distributions (SEDs) for 29 active galactic nuclei (AGNs) between 0.1 and 100 microns. The IRAS data were scaled down to account for extended emission. These correction factors, determined by comparing small aperture ground based 10.6 micron data with large aperture IRAS 12 micron fluxes, were usually less than 25%. These corrected SEDs are shown
Symmetry Breaking for Matter Coupled to Linearized Supergravity From the Perspective of the Current Supermultiplet
We consider a generic supersymmetric matter theory coupled to linearized
supergravity, and analyze scenarios for spontaneous symmetry breaking in terms
of vacuum expectation values of components of the current supermultiplet. When
the vacuum expectation of the energy momentum tensor is zero, but the scalar
current or pseudoscalar current gets an expectation, evaluation of the
gravitino self energy using the supersymmetry current algebra shows that there
is an induced gravitino mass term. The structure of this term generalizes the
supergravity action with cosmological constant to theories with CP violation.
When the vacuum expectation of the energy momentum tensor is nonzero,
supersymmetry is broken; requiring cancellation of the cosmological constant
gives the corresponding generalized gravitino mass formula.Comment: 11 page
And We cast upon his throne a mere body: A Historiographical Reading of Q. 38:34
This paper focuses on Q. 38:34 from the perspective of early and medieval works of Islamic historiography and collections of tales of the prophets: the early tenth century works of 'Umara b. Wathima and Tabari, the eleventh century Tales of the Prophets by Tha'labi, the twelfth century folkloric collection of Kisa'i, along with Ibn 'Asakir's History of Damascus, the thirteenth century world history by Ibn al-Athir, and the fourteenth century historiographical work by Ibn Kathir. These various works are viewed not as any particular stage in the development of a genre, but as variations on a (Qur'anic) theme, and the avenue of medieval historiographers and storytellers is utilised as a bridge to explore various possible interpretations of the Qur'anic passage. Historiographers and storytellers provide us with an illustration of how lessons of admonition implied in the Qur'anic text were perceived in medieval Islamic society. They also, as will become clear, provide a picture of Solomon that is consistent with the Qur'anic figure as a whole
MiniBooNE
The physics motivations, design, and status of the Booster Neutrino
Experiment at Fermilab, MiniBooNE, are briefly discussed. Particular emphasis
is given on the ongoing preparatory work that is needed for the MiniBooNE muon
neutrino to electron neutrino oscillation appearance search. This search aims
to confirm or refute in a definitive and independent way the evidence for
neutrino oscillations reported by the LSND experiment.Comment: 3 pages, no figures, to appear in the proceedings of the 9th
International Conference on Astroparticle and Underground Physics (TAUP
2005), Zaragoza, Spain, 10-14 Sep 200
Nonrenormalization of Flux Superpotentials in String Theory
Recent progress in understanding modulus stabilization in string theory
relies on the existence of a non-renormalization theorem for the 4D
compactifications of Type IIB supergravity which preserve N=1 supersymmetry. We
provide a simple proof of this non-renormalization theorem for a broad class of
Type IIB vacua using the known symmetries of these compactifications, thereby
putting them on a similar footing as the better-known non-renormalization
theorems of heterotic vacua without fluxes. The explicit dependence of the
tree-level flux superpotential on the dilaton field makes the proof more subtle
than in the absence of fluxes.Comment: 16 pages, no figures. Final version, to appear in JHEP. Arguments for
validity of R-symmetry made more explicit. Minor extra comments and
references adde
Heavy-light quark pseudoscalar and vector mesons at finite temperature
The temperature dependence of the mass, leptonic decay constant, and width of
heavy-light quark peseudoscalar and vector mesons is obtained in the framework
of thermal Hilbert moment QCD sum rules. The leptonic decay constants of both
pseudoscalar and vector mesons decrease with increasing , and vanish at a
critical temperature , while the mesons develop a width which increases
dramatically and diverges at , where is the temperature for
chiral-symmetry restoration. These results indicate the disappearance of
hadrons from the spectral function, which then becomes a smooth function of the
energy. This is interpreted as a signal for deconfinement at . In
contrast, the masses show little dependence on the temperature, except very
close to , where the pseudoscalar meson mass increases slightly by 10-20
%, and the vector meson mass decreases by some 20-30
Quark mixing from softly broken symmetries
Quark flavor mixing may originate in the soft breaking of horizontal
symmetries. Those symmetries, which in the simplest case are three family U(1)
groups, are obeyed only by the dimension-4 Yukawa couplings and lead, when
unbroken, to the absence of mixing. Their breaking may arise from the
dimension-3 mass terms of SU(2)-singlet vector-like quarks. Those gauge-singlet
mass terms break the horizontal symmetries at a scale much higher than the
Fermi scale, yet softly, leading to quark mixing while the quark masses remain
unsuppressed.Comment: 9 pages, plain Latex, no figure
Innate immune activating ligand SUMOylation affects tumor cell recognition by NK cells
Natural Killer cells are innate lymphocytes involved in tumor immunosurveillance. They express activating receptors able to recognize self-molecules poorly expressed on healthy cells but up-regulated upon stress conditions, including transformation. Regulation of ligand expression in tumor cells mainly relays on transcriptional mechanisms, while the involvement of ubiquitin or ubiquitin-like modifiers remains largely unexplored. Here, we focused on the SUMO pathway and demonstrated that the ligand of DNAM1 activating receptor, PVR, undergoes SUMOylation in multiple myeloma. Concurrently, we found that PVR is preferentially located in intracellular compartments in human multiple myeloma cell lines and malignant plasma cells and that inhibition of the SUMO pathway promotes its translocation to the cell surface, increasing tumor cell susceptibility to NK cell-mediated cytolysis. Our findings provide the first evidence of an innate immune activating ligand regulated by SUMOylation, and confer to this modification a novel role in impairing recognition and killing of tumor cells.Natural Killer cells are innate lymphocytes involved in tumor immunosurveillance. They express activating receptors able to recognize self-molecules poorly expressed on healthy cells but up-regulated upon stress conditions, including transformation. Regulation of ligand expression in tumor cells mainly relays on transcriptional mechanisms, while the involvement of ubiquitin or ubiquitin-like modifiers remains largely unexplored. Here, we focused on the SUMO pathway and demonstrated that the ligand of DNAM1 activating receptor, PVR, undergoes SUMOylation in multiple myeloma. Concurrently, we found that PVR is preferentially located in intracellular compartments in human multiple myeloma cell lines and malignant plasma cells and that inhibition of the SUMO pathway promotes its translocation to the cell surface, increasing tumor cell susceptibility to NK cell-mediated cytolysis. Our findings provide the first evidence of an innate immune activating ligand regulated by SUMOylation, and confer to this modification a novel role in impairing recognition and killing of tumor cells
On the Approach to the Equilibrium and the Equilibrium Properties of a Glass-Forming Model
In this note we apply some theoretical predictions that arise in the mean
field framework for a large class of infinite range models to structural
glasses and we present a first comparison of these predictions with numerical
results.Comment: 22 pages, 15 figure
Constraining the Littlest Higgs
Little Higgs models offer a new way to address the hierarchy problem, and
give rise to a weakly-coupled Higgs sector. These theories predict the
existence of new states which are necessary to cancel the quadratic divergences
of the Standard Model. The simplest version of these models, the Littlest
Higgs, is based on an non-linear sigma model and predicts that
four new gauge bosons, a weak isosinglet quark, , with , as well as
an isotriplet scalar field exist at the TeV scale. We consider the
contributions of these new states to precision electroweak observables, and
examine their production at the Tevatron. We thoroughly explore the parameter
space of this model and find that small regions are allowed by the precision
data where the model parameters take on their natural values. These regions
are, however, excluded by the Tevatron data. Combined, the direct and indirect
effects of these new states constrain the `decay constant' f\gsim 3.5 TeV and
m_{t'}\gsim 7 TeV. These bounds imply that significant fine-tuning be
present in order for this model to resolve the hierarchy problem.Comment: 31 pgs, 26 figures; bound on t' mass fixed to mt'>2f, conclusions
unchange
- …
