40 research outputs found

    Frasier syndrome: a cause of focal segmental glomerulosclerosis in a 46,XX female

    Get PDF
    The description of Frasier syndrome until now has been restricted to XY females with gonadal dysgenesis, progressive glomerulopathy, and a significant risk of gonadoblastoma. Mutations in the donor splice site in intron 9 of the Wilms\u27 tumor (WT1) gene have been shown to cause Frasier syndrome and are distinct from WT1 exon mutations associated with Denys-Drash syndrome. The WT1 gene, which is essential for normal kidney and gonadal development, encodes a zinc finger transcription factor. The intron 9 alternative splice donor site mutation seen in Frasier syndrome leads to loss of three amino acids (+KTS isoform), thus disrupting the normal ratio of the +KTS/-KTS isoforms critical for proper gonadal and renal development. This study examines two sisters with identical intron 9 mutations. The proband carries a classic diagnosis of Frasier syndrome with 46,XY gonadal dysgenesis, whereas her sister has progressive glomerulopathy but a 46,XX karyotype and normal female development. This indicates that the proper WT1 isoform ratio is critical for renal and testicular development, but apparently does not affect either ovarian development or function. It is proposed that the clinical definition of Frasier syndrome should be broadened to include 46,XX females with normal genital development and focal segmental glomerulosclerosis associated with a WT1 intron 9 donor splice site mutation. Nephrologists need to consider the possibility of this heritable syndrome in evaluation of females with focal segmental glomerulosclerosis and to consider their risk for gonadal malignancy, as well as the risk for kidney disease, gonadal dysgenesis, and malignancy in their offspring

    Caspase-10-Dependent Cell Death in Fas/CD95 Signalling Is Not Abrogated by Caspase Inhibitor zVAD-fmk

    Get PDF
    Upon CD95/Fas ligation, the initiator caspase-8 is known to activate effector caspases leading to apoptosis. In the presence of zVAD-fmk, a broad-spectrum caspase inhibitor, Fas engagement can also trigger an alternative, non-apoptotic caspase-independent form of cell death, which is initiated by RIP1. Controversy exists as to the ability of caspase-10 to mediate cell death in response to FasL (CD95L or CD178). Herein, the role of caspase-10 in FasL-induced cell death has been re-evaluated

    Production of Multiple Brain-Like Ganglioside Species Is Dispensable for Fas-Induced Apoptosis of Lymphoid Cells

    Get PDF
    Activation of an acid sphingomyelinase (aSMase) leading to a biosynthesis of GD3 disialoganglioside has been associated with Fas-induced apoptosis of lymphoid cells. The present study was undertaken to clarify the role of this enzyme in the generation of gangliosides during apoptosis triggered by Fas ligation. The issue was addressed by using aSMase-deficient and aSMase-corrected cell lines derived from Niemann-Pick disease (NPD) patients. Fas cross-linking elicited a rapid production of large amounts of complex a- and b-series species of gangliosides with a pattern and a chromatographic behavior as single bands reminiscent of brain gangliosides. The gangliosides were synthesized within the first ten minutes and completely disappeared within thirty minutes after stimulation. Noteworthy is the observation that GD3 was not the only ganglioside produced. The production of gangliosides and the onset of apoptotic hallmarks occurred similarly in both aSMase-deficient and aSMase-corrected NPD lymphoid cells, indicating that aSMase activation is not accountable for ganglioside generation. Hampering ganglioside production by inhibiting the key enzyme glucosylceramide synthase did not abrogate the apoptotic process. In addition, GM3 synthase-deficient lymphoid cells underwent Fas-induced apoptosis, suggesting that gangliosides are unlikely to play an indispensable role in transducing Fas-induced apoptosis of lymphoid cells

    Are glucosylceramide-related sphingolipids involved in the increased risk for cancer in Gaucher disease patients? Review and hypotheses

    No full text
    The roles of ceramide and its catabolites, i.e., sphingosine and sphingosine 1-phosphate, in the development of malignancies and the response to anticancer regimens have been extensively described. Moreover, an abundant literature points to the effects of glucosylceramide synthase, the mammalian enzyme that converts ceramide to β-glucosylceramide, in protecting tumor cells from chemotherapy. Much less is known about the contribution of β-glucosylceramide and its breakdown products in cancer progression. In this chapter, we first review published and personal clinical observations that report on the increased risk of developing cancers in patients affected with Gaucher disease, an inborn disorder characterized by defective lysosomal degradation of β-glucosylceramide. The previously described mechanistic links between lysosomal β-glucosylceramidase, β-glucosylceramide and/or β-glucosylphingosine, and various hallmarks of cancer are reviewed. We further show that melanoma tumor growth is facilitated in a Gaucher disease mouse model. Finally, the potential roles of the β-glucosylceramidase protein and its lipidic substrates and/or downstream products are discussed.</p

    Palmitoyl protein thioesterase 1 modulates tumor necrosis factor alpha-induced apoptosis.

    Get PDF
    International audienceInduction of apoptosis by TNF has recently been shown to implicate proteases from lysosomal origin, the cathepsins. Here, we investigated the role in apoptosis of palmitoyl protein thioesterase 1 (PPT1), another lysosomal enzyme that depalmitoylates proteins. We show that transformed fibroblasts derived from patients with the infantile form of neuronal ceroid lipofuscinosis (INCL), a neurodegenerative disease due to deficient activity of PPT1, are partially resistant to TNF-induced cell death (57-75% cell viability vs. 15-30% for control fibroblasts). TNF-initiated proteolytic cleavage of caspase-8, Bid and caspase-3, as well as cytochrome c release was strongly attenuated in INCL fibroblasts as compared to control cells. Noteworthy, activation of p42/p44 mitogen-activated protein kinase and of transcription factor NF-kappaB by TNF, and induction of cell death by staurosporine or chemotherapeutic drugs in INCL cells were unaffected by PPT1 deficiency. Resistance to TNF-induced apoptosis was also observed in embryonic fibroblasts derived from Ppt1/Cln1-deficient mice but not from mice with a targeted deletion of Cln3 or Cln5. Finally, reconstitution of PPT1 activity in mutant cells was accompanied by resensitization to TNF-induced caspase activation and toxicity. These observations emphasize for the first time the role of PPT1 and, likely, protein depalmitoylation in the regulation of TNF-induced apoptosis

    Human genetic disorders of sphingolipid biosynthesis

    Full text link
    Monogenic defects of sphingolipid biosynthesis have been recently identified in human patients. These enzyme deficiencies affect the synthesis of sphingolipid precursors, ceramides or complex glycosphingolipids. They are transmitted as autosomal recessive or dominant traits, and their resulting phenotypes often replicate the abnormalities seen in murine models deficient for the corresponding enzymes. In quite good agreement with the known critical roles of sphingolipids in cells from the nervous system and the epidermis, these genetic defects clinically manifest as neurological disorders, including paraplegia, epilepsy or peripheral neuropathies, or present with ichthyosis. The present review summarizes the genetic alterations, biochemical changes and clinical symptoms of this new group of inherited metabolic disorders. Hypotheses regarding the molecular pathophysiology and potential treatments of these diseases are also discussed

    Apolipoprotein E-deficient mice develop an anti-Chlamydophila pneumoniae T helper 2 response and resist vascular infection.

    No full text
    International audienceBACKGROUND: Hypercholesterolemia could inhibit the immune response against various pathogens. No information is available about its impact on the immune response toward Chlamydophila pneumoniae. METHODS: Apolipoprotein E (apoE)-deficient and wild-type mice fed a normal diet were infected with a single intranasal inoculation of viable C. pneumoniae. RESULTS: Whereas interferon gamma concentrations (T helper 1 response) were similar in the lungs and spleen of apoE-deficient and wild-type mice, increased concentrations of interleukin 10, interleukin 6, and interleukin 4 (T helper 2 response) were found in the lungs of apoE-deficient mice. The spleen B lymphocyte percentage and interleukin 4 levels and serum specific antibody titers were higher in apoE-deficient mice. C. pneumoniae infection was facilitated neither in the lungs nor in the aorta of these mice. On the contrary, the number of apoE-deficient mice with detectable levels of bacterial DNA in the aorta was clearly decreased. When low-density lipoprotein receptor-deficient mice fed a normal diet were similarly infected, no difference in the interleukin 4 concentration and infection level was observed in the lungs and no protection was found in the aorta. CONCLUSIONS: Mild hypercholesterolemia in mice does not facilitate C. pneumoniae persistence in the vascular wall. ApoE deficiency, rather than mild hypercholesterolemia, probably favors the development of an unusual anti-C. pneumoniae T helper 2 response and protects against vascular infection

    Production of gangliosides in Niemann-Pick disease lymphoid cells upon treatment with anti-Fas or C<sub>6</sub>-ceramide.

    No full text
    <p>(<i>a</i>) Ganglioside production in Niemann-Pick lymphoblasts after treatment with anti-Fas antibody (200 ng/ml) for 15 min. Gangliosides were analyzed by HPTLC. The standard (Std) represents a mixture of bovine brain and melanoma gangliosides. For each cell line, the same number (50×10<sup>6</sup>) of untreated and anti-Fas-treated cells was used. Lipids were extracted and loaded on the plate. (<i>b</i>) MS1418 cells (25×10<sup>6</sup>) were incubated at 37°C for the indicated times with anti-Fas (500 ng/ml). Then, gangliosides were extracted and analyzed by HPTLC. Std represents standard gangliosides from melanoma (Mel.) or bovine brain. (<i>c</i>) Tre NPD lymphoblasts (25×10<sup>6</sup>) cells were treated for 10 min at 37°C with 50 µM of C<sub>6</sub>-ceramide dissolved in ethanol. Then, gangliosides were purified and analyzed by HPTLC.</p

    Neutral sphingolipid percent distribution in NPD Tre cells pre-incubated with the indicated concentrations of NDJ or PDMP.

    No full text
    <p>Lipids were separated by HPTLC and their concentrations were determined after acid hydrolysis using fluorescamine as previously described <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0019974#pone.0019974-Kisic1" target="_blank">[37]</a>.</p
    corecore