68 research outputs found

    Advances in imaging chest tuberculosis: blurring of differences between children and adults

    Get PDF
    This article reviews the ongoing role of imaging in the diagnosis of tuberculosis (TB) and its complications. A modern imaging classification of TB, taking into account both adults and children and the blurring of differences in the presentation patterns, must be absorbed into daily practice. Clinicians must not only be familiar with imaging features of TB but also become expert at detecting these when radiologists are unavailable. Communication between radiologists and clinicians with regard to local constraints, patterns of disease, human immunodeficiency virus (HIV) coinfection rates, and imaging parameters relevant for management (especially in drug resistance programs) is paramount for making an impact with imaging, and preserving clinician confidence. Recognition of special imaging, anatomic and vulnerability differences between children and adults is more important than trying to define patterns of disease exclusive to children

    Stoichiometric incorporation of base substitutions at specific sites in supercoiled DNA and supercoiled recombination intermediates

    Get PDF
    Supercoiled DNA is the relevant substrate for a large number of DNA transactions and has additionally been found to be a favorable form for delivering DNA and protein-DNA complexes to cells. We report here a facile method for stoichiometrically incorporating several different modifications at multiple, specific, and widely spaced sites in supercoiled DNA. The method is based upon generating an appropriately gapped circular DNA, starting from single-strand circular DNA from two phagemids with oppositely oriented origins of replication. The gapped circular DNA is annealed with labeled and unlabeled synthetic oligonucleotides to make a multiply nicked circle, which is covalently sealed and supercoiled. The method is efficient, robust and can be readily scaled up to produce large quantities of labeled supercoiled DNA for biochemical and structural studies. We have applied this method to generate dye-labeled supercoiled DNA with heteroduplex bubbles for a Förster resonance energy transfer (FRET) analysis of supercoiled Holliday junction intermediates in the λ integrative recombination reaction. We found that a higher-order structure revealed by FRET in the supercoiled Holliday junction intermediate is preserved in the linear recombination product. We suggest that in addition to studies on recombination complexes, these methods will be generally useful in other reactions and systems involving supercoiled DNA

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Phage-Mediated Molecular Detection (PMMD): A Novel Rapid Method for Phage-Specific Bacterial Detection

    No full text
    Bacterial infections pose a challenge to human health and burden the health care system, especially with the spread of antibiotic-resistant populations. To provide effective treatment and improved prognosis, effective diagnostic methods are of great importance. Here we present phage-mediated molecular detection (PMMD) as a novel molecular method for the detection and assessment of bacterial antibiotic resistance. This technique consists of a brief incubation, of approximately ten minutes, of the biological sample with a natural bacteriophage (phage) targeting the bacteria of interest. This is followed by total RNA extraction and RT-PCR. We applied this approach to Staphylococcus aureus (SA), a major causative agent of human bacterial infections. PMMD demonstrated a high sensitivity, rapid implementation, and specificity dependent on the phage host range. Moreover, due to the dependence of the signal on the physiological state of the bacteria, PMMD can discriminate methicillin-sensitive from methicillin-resistant SA (MSSA vs. MRSA). Finally, we extended this method to the detection and antibiotic sensitivity determination of other bacteria by proving PMMD efficacy for Bacillus anthracis

    Enrichment post-library preparation enhances the sensitivity of high-throughput sequencing-based detection and characterization of viruses from complex samples

    No full text
    Abstract Background Sequencing-based detection and characterization of viruses in complex samples can suffer from lack of sensitivity due to a variety of factors including, but not limited to, low titer, small genome size, and contribution of host or environmental nucleic acids. Hybridization-based target enrichment is one potential method for increasing the sensitivity of viral detection via high-throughput sequencing. Results This study expands upon two previously developed panels of virus enrichment probes (for filoviruses and for respiratory viruses) to include other viruses of biodefense and/or biosurveillance concern to the U.S. Department of Defense and various international public health agencies. The newly expanded and combined panel is tested using carefully constructed synthetic metagenomic samples that contain clinically relevant amounts of viral genetic material. Target enrichment results in a dramatic increase in sensitivity for virus detection as compared to shotgun sequencing, yielding full, deeply covered viral genomes from materials with Ct values suggesting that amplicon sequencing would be likely to fail. Increased pooling to improve cost- and time-effectiveness does not negatively affect the ability to obtain full-length viral genomes, even in the case of co-infections, although as expected, it does decrease depth of coverage. Conclusions Hybridization-based target enrichment is an effective solution to obtain full-length viral genomes for samples from which virus detection would fail via unbiased, shotgun sequencing or even via amplicon sequencing. As the development and testing of probe sets for viral target enrichment expands and continues, the application of this technique, in conjunction with deeper pooling strategies, could make high-throughput sequencing more economical for routine use in biosurveillance, biodefense and outbreak investigations
    corecore