7 research outputs found

    The cell surface proteome of human mesenchymal stromal cells.

    Get PDF
    BackgroundMultipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.Methodology/principal findingsTo obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.Conclusions/significanceCollectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention

    Rapid Changes of mRNA-binding Protein Levels following Glucose and 3-Isobutyl-1-methylxanthine Stimulation of Insulinoma INS-1 Cells *S⃞

    No full text
    Glucose and cAMP-inducing agents such as 3-isobutyl-1-methylxanthine (IBMX) rapidly change the expression profile of insulin-producing pancreatic β-cells mostly through post-transcriptional mechanisms. A thorough analysis of these changes, however, has not yet been performed. By combining two-dimensional differential gel electrophoresis and mass spectrometry, we identified 165 spots, corresponding to 78 proteins, whose levels significantly change after stimulation of the β-cell model INS-1 cells with 25 mm glucose + 1 mm IBMX for 2 h. Changes in the expression of selected proteins were verified by one- and two-dimensional immunoblotting. Most of the identified proteins are novel targets of rapid regulation in β-cells. The transcription inhibitor actinomycin D failed to block changes in two-thirds of the spots, supporting their post-transcriptional regulation. More spots changed in response to IBMX than to glucose alone conceivably because of phosphorylation. Fourteen mRNA- binding proteins responded to stimulation, thus representing the most prominent class of rapidly regulated proteins. Bioinformatics analysis indicated that the mRNA 5′- and 3′-untranslated regions of 22 regulated proteins contain potential binding sites for polypyrimidine tract-binding protein 1, which promotes mRNA stability and translation in stimulated β-cells. Overall our findings support the idea that mRNA-binding proteins play a major role in rapid adaptive changes in insulin-producing cells following their stimulation with glucose and cAMP-elevating agents
    corecore