17 research outputs found

    Global fecal and plasma metabolic dynamics related to Helicobacter pylori eradication

    Get PDF
    Background:Helicobacter pylori colonizes the gastric mucosa of more than half of the world's population. There is increasing evidence H. pylori protects against the development of obesity and childhood asthma/allergies in which the development of these diseases coincide with transient dysbiosis. However, the mechanism underlying the association of H. pylori eradication with human metabolic and immunological disorders is not well-established. In this study, we aimed to investigate the local and systemic effects of H. pylori eradication through untargeted fecal lipidomics and plasma metabolomics approaches by liquid chromatography mass spectrometry (LC-MS). Results: Our study revealed that eradication of H. pylori eradication (i.e., loss of H. pylori and/or H. pylori eradication therapy) changed many global metabolite/lipid features, with the majority being down-regulated. Our findings primarily show that H. pylori eradication affects the host energy and lipid metabolism which may eventually lead to the development of metabolic disorders. Conclusion: These predictive metabolic signatures of metabolic and immunological disorders following H. pylori eradication can provide insights into dynamic local and systemic metabolism related to H. pylori eradication in modulating human health

    Helicobacter pylori eradication causes perturbation of the human gut microbiome in young adults

    Full text link
    BACKGROUND: Accumulating evidence shows that Helicobacter pylori protects against some metabolic and immunological diseases in which the development of these diseases coincide with temporal or permanent dysbiosis. The aim of this study was to assess the effect of H. pylori eradication on the human gut microbiome. METHODS: As part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths) study, we collected stool samples from 17 H. pylori-positive young adult (18-30 years-old) volunteers. The same cohort was followed up 6, 12 and 18 months-post H. pylori eradication. The impact of H. pylori on the human gut microbiome pre- and post-eradication was investigated using high throughput 16S rRNA gene (V3-V4 region) sequencing using the Illumina Miseq followed by data analysis using Qiime pipeline. RESULTS: We compared the composition and diversity of bacterial communities in the fecal microbiome of the H. pylori-positive volunteers, before and after H. pylori eradication therapy. The 16S rRNA gene was sequenced at an average of 150,000-170,000 reads/sample. The microbial diversity were similar pre- and post-H. pylori eradication with no significant differences in richness and evenness of bacterial species. Despite that the general profile of the gut microbiome was similar pre- and post-eradication, some changes in the bacterial communities at the phylum and genus levels were notable, particularly the decrease in relative abundance of Bacterioidetes and corresponding increase in Firmicutes after H. pylori eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria genera could also be associated with increased risk of metabolic disorders. CONCLUSIONS: Our preliminary stool metagenomics study shows that eradication of H. pylori caused perturbation of the gut microbiome and may indirectly affect the health of human. Clinicians should be aware of the effect of broad spectrum antibiotics used in H. pylori eradication regimen and be cautious in the clinical management of H. pylori infection, particularly in immunocompromised patients

    Unravelling the metabolic and immunological impacts of helicobacter pylori eradication in healthy adult/youth through omics / Theresa Yap Wan Chen

    Get PDF
    Helicobacter pylori is an important bacterial aetiological agent of gastroduodenal diseases. H. pylori positivity is also a risk factor for gastric adenocarcinoma and MALT lymphoma. Ironically, accumulating evidence demonstrates that H. pylori may protect the human host against obesity and atopic disorders. We hypothesised that disappearance H. pylori leads to changes in the human gut microbiome resulting in local and systemic changes in metabolism that may contribute to eventual development of undesirable metabolic and immunological disorders. This study was therefore, carried out to investigate the implications of H. pylori eradication and the association with metabolic and immunological disorders in a young healthy adult population. From 573 healthy adult volunteers (18-30 years-old) screened, the prevalence of H. pylori infection was 9.9%. Eventually, 29 H. pylori-positive subjects were enrolled and assessed during baseline followed by 6, 12 and 18 months post-H. pylori eradication. Faecal metagenomics and lipidomics were used to evaluate the local effects following H. pylori eradication on the gut microbiota and further metabolic, immunological and plasma metabolomic studies were performed to reflect the systemic effects of H. pylori eradication. The impact of H. pylori on the human gut microbiome pre- and post eradication was investigated using 16S rRNA gene (V3-V4 region) sequencing and data analysis using Qiime pipeline. The local and systemic effects of H. pylori, post eradication, were examined through untargeted faecal lipidomics and plasma metabolomics using liquid chromatography mass spectrometry (LC-MS). The effect of H. pylori eradication on meal-associated changes on gastrointestinal metabolic hormones, cytokines and Immunolglobulin E (IgE) antibody level were evaluated using a multiplex bead assay and enzyme-linked immunosorbent assay, correspondingly. The microbial diversity was found to be similar pre- and post-H. pylori eradication with no iv significant differences in bacterial richness and evenness. Despite that, some changes in the bacterial communities at the phylum and genus levels were notable, particularly the decrease in relative abundance of Bacterioidetes and the corresponding increase in Firmicutes following H. pylori eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria genera could also be associated with increased risk of metabolic disorders. Faecal lipidomics and plasma metabolomics revealed that eradication of H. pylori dramatically changed many global metabolite/lipid features, with the majority of them being down-regulated. The influence of gut microbiota on plasma metabolites profile was also demonstrated. These findings primarily implicate the perturbation of gut microbiota following H. pylori eradication in host energy and lipid metabolism which may eventually lead to the development of metabolic disorders. Metabolic studies demonstrated that H. pylori eradication was associated with long-term disturbance in active amylin, pancreatic polypeptide and total peptide YY both pre- and post-prandially and glucagon-like peptide-1 post-prandially (p<0.05). An inverse association between H. pylori infection and allergen specific-IgE antibodies (p<0.05) was observed. The predictive metabolic signature of metabolic and immunological disorders following H. pylori eradication may give us insights on complex interaction of H. pylori with gut microbiota, the importance of biosis of the gut microbiota and their implications in human health. In conclusion, eradication of H. pylori demonstrated intricate and complex interactions between H. pylori and the gut microbiota in modulating human health and therefore, a point to ponder upon future management of H. pylori infection

    Changes in Metabolic Hormones in Malaysian Young Adults following Helicobacter pylori Eradication.

    No full text
    More than half of the world's adults carry Helicobacter pylori. The eradication of H. pylori may affect the regulation of human metabolic hormones. The aim of this study was to evaluate the effect of H. pylori eradication on meal-associated changes in appetite-controlled insulinotropic and digestive hormones, and to assess post-eradication changes in body mass index as part of a currently on-going multicentre ESSAY (Eradication Study in Stable Adults/Youths) study.We enrolled 29 H. pylori-positive young adult (18-30 year-old) volunteer subjects to evaluate the effect of H. pylori eradication on meal-associated changes on eight gastrointestinal hormones, using a multiplex bead assay. Changes in body mass index and anthropometric measurements were recorded, pre- and post-eradication therapy.Pre-prandial active amylin, total peptide YY (PYY) and pancreatic polypeptide (PP) levels were significantly elevated 12 months post-eradication compared with baseline (n = 18; Wilcoxon's signed rank test, p<0.05). Four of the post-prandial gut metabolic hormones levels (GLP-1, total PYY, active amylin, PP) were significantly higher 12 months post-eradication compared to baseline (n = 18; p<0.05). Following H. pylori eradication, the BMI and anthropometric values did not significantly change.Our study indicates that H. pylori eradication was associated with long-term disturbance in three hormones (active amylin, PP and total PYY) both pre- and post-prandially and one hormone (GLP-1) post-prandially. Longer post-eradication monitoring is needed to investigate the long-term impact of the observed hormonal changes on metabolic homeostasis

    Association between Celiac Disease and <i>Helicobacter pylori</i> infection.

    No full text
    <p><sup>c</sup>Pearson’s chi-square test was performed between <i>H</i>. <i>pylori</i> serology and CD serology</p><p>Association between Celiac Disease and <i>Helicobacter pylori</i> infection.</p

    Fluorescence images of detection anti-EmA antibodies using indirect immunofluorescence assay.

    No full text
    <p>(A) Image on the left is positive control; image on the right is negative control under 100X magnification. (B) An example of anti-EmA positive sample at 1:10 dilution (left image) and 1:40 dilution (right image) under 100X magnification. Fluorescent staining with intensity of 1+ or greater with a clearly discernable pattern of fluorescence in the musclaris mucosae (staining of the endomycium around the smooth muscle fibers) was observed.</p
    corecore