180 research outputs found

    Immunosuppressive functions of melanoma cell-derived exosomes in plasma of melanoma patients

    Get PDF
    Tumor-derived exosomes (TEX) are a subset of small extracellular vesicles (sEV) present in all body fluids of patients with cancer. In plasma of patients with metastatic melanoma, numbers of exosomes produced by melanoma cells called MTEX are elevated. To study the role of MTEX in melanoma progression, immunoaffinity-based separation of MTEX from total plasma exosomes was performed. The surface of MTEX was decorated by various checkpoint inhibitory proteins, and upon coincubation with immune recipient cells, MTEX suppressed anti-tumor functions of these cells. MTEX emerge as a major mechanism of immune suppression in melanoma and thus might play a role in promoting melanoma progression

    Differential Responses of Human Regulatory T Cells (Treg) and Effector T Cells to Rapamycin

    Get PDF
    Background: The immunosuppressive drug rapamycin (RAPA) promotes the expansion of CD4+ CD25highFoxp3+ regulatory\ud T cells via mechanisms that remain unknown. Here, we studied expansion, IL-2R-c chain signaling, survival pathways and resistance to apoptosis in human Treg responding to RAPA.\ud Methodology/Principal Findings: CD4+CD25+ and CD4+CD25neg T cells were isolated from PBMC of normal controls (n = 21)\ud using AutoMACS. These T cell subsets were cultured in the presence of anti-CD3/CD28 antibodies and 1000 IU/mL IL-2 for 3 to 6 weeks. RAPA (1–100 nM) was added to half of the cultures. After harvest, the cell phenotype, signaling via the PI3K/ mTOR and STAT pathways, expression of survival proteins and Annexin V binding were determined and compared to values obtained with freshly-separated CD4+CD25high and CD4+CD25neg T cells. Suppressor function was tested in co-cultures with autologous CFSE-labeled CD4+CD25neg or CD8+CD25neg T-cell responders. The frequency and suppressor activity of Treg were increased after culture of CD4+CD25+ T cells in the presence of 1–100 nM RAPA (p,0.001). RAPA-expanded Treg were largely CD4+CD25highFoxp3+ cells and were resistant to apoptosis, while CD4+CD25neg T cells were sensitive. Only Treg upregulated anti-apoptotic and down-regulated pro-apoptotic proteins. Treg expressed higher levels of the PTEN protein than CD4+CD25neg cells. Activated Treg6RAPA preferentially phosphorylated STAT5 and STAT3 and did not utilize the PI3K/ mTOR pathway.\ud Conclusions/Significance: RAPA favors Treg expansion and survival by differentially regulating signaling, proliferation and sensitivity to apoptosis of human effector T cells and Treg after TCR/IL-2 activation

    Challenges in Exosome Isolation and Analysis in Health and Disease

    Get PDF
    A growing body of evidence emphasizes the important role exosomes in different physiological and pathological conditions. Exosomes, virus-size extracellular vesicles (EVs), carry a complex molecular cargo, which is actively processed in the endocytic compartment of parental cells. Exosomes carry and deliver this cargo to recipient cells, serving as an intercellular communication system. The methods for recovery of exosomes from supernatants of cell lines or body fluids are not uniformly established. Yet, studies of the quality and quantity of exosome cargos underlie the concept of “liquid biopsy.” Exosomes are emerging as a potentially useful diagnostic tool and a predictor of disease progression, response to therapy and overall survival. Although many novel approaches to exosome isolation and analysis of their cargos have been introduced, the role of exosomes as diagnostic or prognostic biomarkers of disease remains unconfirmed. This review considers existing challenges to exosome validation as disease biomarkers. Focusing on advantages and limitations of methods for exosome isolation and characterization, approaches are proposed to facilitate further progress in the development of exosomes as biomarkers in human disease

    Diversity of Extracellular Vesicles (EV) in Plasma of Cancer Patients

    Get PDF
    Extracellular vesicles (EVs) are produced by all cells and are found in all body fluids. They function as intercellular messengers that carry and deliver signals regulating cellular interactions in health and disease. EVs are emerging as potential biomarkers of diseases and responses to therapies, and much attention is being devoted to understanding their role in physiological as well as pathological events. EVs are heterogenous in their origin, size, molecular characteristics, genetic content and functions. Isolation of EV subsets from plasma and characterization of their distinct properties have been a limiting factor in ongoing efforts to understand their biological importance. Here, we discuss the immunoaffinity-based strategies that are available for isolating distinct subsets of EVs from plasma and provide a road-map to their successful immunocapture and molecular profiling, with special attention to tumor-derived EVs or TEX

    Biologically-active exosomes in plasma of AML patients inhibit innate immunity and promote leukemia progression

    Get PDF
    AML patients are reported to have impairments of immune cells which contribute to leukemia progression. Tumor-derived exosomes (TEX) have recently emerged as carriers of the molecular and genetic cargo with potent immunosuppressive properties. We showed that plasma of newly-diagnosed AML patients prior to any therapy contained high levels of exosomal proteins relative to those in plasma of normal donors (NC). AML exosomes were enriched in membrane-associated TGF-β1, MICA/MICB and markers of myeloid blasts. We hypothesize that these plasma-derived virus-size (30-100nm) membrane-bound vesicles operating in AML deliver suppressive signals to immune cells and thus may promote leukemia progression

    Harmonization of exosome isolation from culture supernatants for optimized proteomics analysis

    Get PDF
    <div><p>Exosomes, the smallest subset of extracellular vesicles (EVs), have recently attracted much attention in the scientific community. Their involvement in intercellular communication and molecular reprogramming of different cell types created a demand for a stringent characterization of the proteome which exosomes carry and deliver to recipient cells. Mass spectrometry (MS) has been extensively used for exosome protein profiling. Unfortunately, no standards have been established for exosome isolation and their preparation for MS, leading to accumulation of artefactual data. These include the presence of high-abundance exosome-contaminating serum proteins in culture media which mask low-abundance exosome-specific components, isolation methods that fail to yield “pure” vesicles or variability in protein solubilization protocols. There is an unmet need for the development of standards for exosome generation, harvesting, and isolation from cellular supernatants and for optimization of protein extraction methods before proteomics analysis by MS. In this communication, we illustrate the existing problems in this field and provide a set of recommendations that are expected to harmonize exosome processing for MS and provide the faithful picture of the proteomes carried by exosomes. The recommended workflow for effective and specific identification of proteins in exosomes released by the low number of cells involves culturing cells in medium with a reduced concentration of exosome-depleted serum, purification of exosomes by size-exclusion chromatography, a combination of different protein extraction method and removal of serum-derived proteins from the final dataset using an appropriate sample of cell-unexposed medium as a control. Application of this method allowed detection of >250 vesicle-specific proteins in exosomes from 10 mL of culture medium.</p></div

    Spontaneous immune responses against glioma-associated antigens in a long term survivor with malignant glioma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with high grade glioma, little is known regarding existence of naturally occurring adaptive T cell reactivity against glioma-associated antigens (GAAs). In this report, we characterized GAA-specific CD8<sup>+ </sup>T cells and innate immune cells in a patient who has survived with anaplastic astrocytoma (AA) for over 12 years without recurrence.</p> <p>Methods</p> <p>Peripheral blood mononuclear cells (PBMCs) derived from the long term survivor with AA were evaluated for the frequency, cytotoxic T lymphocyte (CTL) activity and differentiation status of CD8<sup>+ </sup>cells recognizing GAA-derived epitopes as well as relative numbers of other immune cell subsets. This patient's AA tissue was evaluated for expression of two GAAs EphA2 and interleukin-13 receptor α2 subunit (IL-13Rα2) by immunohistochemistry.</p> <p>Results</p> <p>The patient's tumor expressed both EphA2 and IL-13Rα2, and <it>in vitro </it>stimulated PBMC demonstrated superior EphA2<sub>883–891 </sub>and IL-13Rα2<sub>345–353</sub>-specific CTL reactivity compared to PBMC samples from two other patients with progressing malignant glioma. Unstimulated EphA2<sub>883–891</sub>-reactive CD8<sup>+ </sup>T cells contained high numbers of CD45RA<sup>-</sup>/CCR7<sup>- </sup>late effector and CD45RA<sup>-</sup>/CCR7<sup>+ </sup>central memory cells. Among other leukocyte subsets, elevated numbers of NK-T cells were found.</p> <p>Conclusion</p> <p>To our knowledge, the current study is one of the first demonstrating the presence of antigen-experienced, GAA-reactive CD8<sup>+ </sup>T cells in a patient who has survived with AA for over 12 years without recurrence. Further studies are warranted to determine whether the status of GAA-reactive CD8<sup>+ </sup>T cells dictates survival of patients and/or response to therapeutic vaccines.</p
    corecore