7 research outputs found

    Freeze-Drying of Mononuclear Cells Derived from Umbilical Cord Blood Followed by Colony Formation

    Get PDF
    BACKGROUND: We recently showed that freeze-dried cells stored for 3 years at room temperature can direct embryonic development following cloning. However, viability, as evaluated by membrane integrity of the cells after freeze-drying, was very low; and it was mainly the DNA integrity that was preserved. In the present study, we improved the cells' viability and functionality after freeze-drying. METHODOLOGY/PRINCIPAL FINDINGS: We optimized the conditions of directional freezing, i.e. interface velocity and cell concentration, and we added the antioxidant EGCG to the freezing solution. The study was performed on mononuclear cells (MNCs) derived from human umbilical cord blood. After freeze-drying, we tested the viability, number of CD34(+)-presenting cells and ability of the rehydrated hematopoietic stem cells to differentiate into different blood cells in culture. The viability of the MNCs after freeze-drying and rehydration with pure water was 88%-91%. The total number of CD34(+)-presenting cells and the number of colonies did not change significantly when evaluated before freezing, after freeze-thawing, and after freeze-drying (5.4 x 10(4)+/-4.7, 3.49 x 10(4)+/-6 and 6.31 x 10(4)+/-12.27 cells, respectively, and 31+/-25.15, 47+/-45.8 and 23.44+/-13.3 colonies, respectively). CONCLUSIONS: This is the first report of nucleated cells which have been dried and then rehydrated with double-distilled water remaining viable, and of hematopoietic stem cells retaining their ability to differentiate into different blood cells

    Chelators in Iron and Copper Toxicity

    Get PDF
    Purpose of Review Chelation therapy is used for diseases causing an imbalance of iron levels (for example haemochromatosis and thalassaemia) or copper levels (for example Menkes’ and Wilson’s diseases). Currently, most pharmaceutical chelators are relatively simple but often have side effects. Some have been taken off the market. This review attempts to find theory and knowledge required to design or find better chelators. Recent Findings Recent research attempting to understand the biological mechanisms of protection against iron and copper toxicity is reviewed. Understanding of molecular mechanisms behind normal iron/copper regulation may lead to the design of more sophisticated chelators. The theory of metal ion toxicity explains why some chelators, such as EDTA, which chelate metal ions in a way which exposes the ion to the surrounding environment are shown to be unsuitable except as a means of killing cancer cells. The Lewis theory of acids and bases suggests which amino acids favour the attachment of the hard/intermediate ions Fe2+, Fe3+, Cu2+ and soft ion Cu+. Non-polar amino acids will chelate the ion in a position not in contact with the surrounding cellular environment. The conclusion is that only the soft ion binding cysteine and methionine appear as suitable chelators. Clearly, nature has developed proteins which are less restricted. Recent research on naturally produced chelators such as siderophores and phytochemicals show some promise as pharmaceuticals. Summary Although an understanding of natural mechanisms of Fe/Cu regulation continues to increase, the pharmaceutical chelators for metal overload diseases remain simple non-protein molecules. Natural and synthetic alternatives have been studied but require further research before being accepted
    corecore