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Abstract 

Purpose of Review 

Chelation therapy is used for diseases causing an imbalance of iron levels (for example 

haemochromatosis and thalassaemia) or copper levels (for example Menkes’ and Wilson’s 

diseases). Currently, most pharmaceutical chelators are relatively simple but often have side 

effects. Some have been taken off the market. 

This review attempts to find theory and knowledge required to design or find better chelators. 

Recent Findings 

Recent research attempting to understand the biological mechanisms of protection against 

iron and copper toxicity is reviewed. Understanding of molecular mechanisms behind normal 

iron/copper regulation may lead to the design of more sophisticated chelators. The theory of 

metal ion toxicity explains why some chelators, such as EDTA, which chelate metal ions in a 

way which exposes the ion to the surrounding environment are shown to be unsuitable except 

as a means of killing cancer cells. 

The Lewis theory of acids and bases suggests which amino acids favour the attachment of the 

hard/intermediate ions Fe2+, Fe3+, Cu2+ and soft ion Cu+. Non-polar amino acids will chelate 

the ion in a position not in contact with the surrounding cellular environment. The conclusion 

is that only the soft ion binding cysteine and methionine appear as suitable chelators. Clearly, 

nature has developed proteins which are less restricted. 

Recent research on naturally produced chelators such as siderophores and phytochemicals 

show some promise as pharmaceuticals. 

Summary 

Although an understanding of natural mechanisms of Fe/Cu regulation continues to increase, 

the pharmaceutical chelators for metal overload diseases remain simple non-protein 

molecules. Natural and synthetic alternatives have been studied but require further research 

before being accepted. 
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Antioxidant protein 
ATP 

Adenosine triphosphate 
ATP7A 

ATPase copper transporting alpha protein/Menkes’ protein  
ATP7B 

ATPase copper transporting beta protein/Wilson disease protein 
BAL 

British anti-Lewisite/2,3-dimercaprol 
CCS 

Copper chaperone for Zn, Cu superoxide dismutase 
Cp 

Ceruloplasmin 
ctr1 

Copper transporter 1 
COX17 

Cytochrome c oxidase chaperone 
DAT 

N1,N10-Diacetyltriethylenetetramine 
DFO 

Deferoxamine 
DIBI 

Iron-chelator developed by the company Chelation Partners Inc. 
DMSA 

Meso-2,3-dimercaptosuccinic acid 
DMT1 

Divalent metal transporter 1 
DNA 

Deoxyribonucleic acid 
DPA 

D-Penicillamine/β-β-dimethylcysteine/3-mercapto-D-valine 
D-PEN 

D-Penicillamine/β-β-dimethylcysteine/3-mercapto-D-valine 
EDTA 

Ethylendiamine-tetraacetic acid 
FPN 

Ferroportin 
HCP 

Heme carrier protein 



IRE 

Iron-responsive element 
IREG1 

Iron regulator transporter protein 1 
IRE-BP 

Iron-responsive element-binding protein 
IRP 

Iron regulatory protein 
L1 

Deferiprone/1,2-dimethyl-3-hydroxypyrid-4-one 
MAT 

N1-Acetyltriethylenetetramine 
MNK 

Menkes’protein/ATPase copper transporting alpha protein 
NADH 

Reduced form of nicotinamide adenine dinucleotide 
NTA 

Nitrilotriacetic acid 
PBT2 

5,7-Dichloro-2-[(dimethylamino)methyl]quinolin-8-ol 
SOD 

Superoxide dismutase 
SOD1 

Superoxide dismutase type 1 
SOD3 

Superoxide dismutase type 3 
spp. 

Plurality of species 
TETA 

Tetraethylenetetraamine/trientine 
Tf 

Transferrin 
Tfr 

Transferrin receptor 
TGN 

Trans golgi network 
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Introduction 

Metals are generally toxic to organisms. In higher organisms, these 
compounds interfere with functions of various organs, usually the central 
nervous system, haematopoietic system, liver and kidneys [1••]. However, 
many metals, including iron and copper in particular, are essential in trace 
amounts [2, 3]. It is well-known that transition metals have catalytic 
properties. Biological organisms combine one of two metal atoms to a 
protein to form important enzymes. Essential trace amounts of these metals 
are absorbed, usually in the diet, and are transported to the sites where the 
metal is added to the protein to make the functional enzyme. During 
transport, the metal is often tightly bound to chaperone proteins protecting 
the organism from the harmful effects of naked metal ions. Excess iron is 
safely stored as ferritin [4]. 

The Double Roles of Iron and Copper 

Iron is necessary for the body for many iron-based enzymes such as 
cytochromes, catalase, hydrogenase, iron-responsive element-binding 
proteins (IRE-BPs), aconitase, as well as the essential oxygen storage 
molecule myoglobin and oxygen transporter haemoglobin [3]. Likewise, 
copper is an essential trace element for many biological functions such as 
removing superoxide radicals, formation of ATP, synthesis of important 
mediators and regulation of transcription [5–7]. It is the key component in 
many enzymes. Metalloproteins of copper include superoxide dismutases 
(SODs) such as human SOD1, human SOD3, plastocyanin, cytochrome c 
oxidase, laccase, nitrous-oxide-reductase, nitrite reductase and NADH 
dehydrogenase 2. Copper exists in lysyl oxidase (important in connective 
tissue). In particular, cytochrome oxidase is very important as an electron 
transport protein in respiration [8]. Copper is also important in mammalian 
gene expression, nerve myelation and endorphin action. Copper deficiency 
has been shown to impair immunity [2]. 

Unbound free iron and copper are toxic for reasons well known to 
researchers into the possible effects of ageing and free-radical damage during 
respiration. Hydrogen peroxide is produced both as a part of the respiration 
cycle and as a weapon to destroy pathogens by macrophages. Hydrogen 
peroxide is removed by catalase but not immediately. If free iron is present 
then hydrogen peroxide reacts with Fe(II) to produce hydroxyl radicals. This 
is known as the Fenton reaction. Equation (1) gives Fenton reaction for iron. 

Fe(II)+H2O2→Fe(III)+HO∙+OH−Fe(II)+H2O2→Fe(III)+HO∙+OH− 
(1) 

Hydroxyl radicals are very aggressive fast reacting species reacting with the 
nearest molecule which may be, in the worst cases, a protein, lipid or DNA 
molecule. Due to their highly reactive and transient nature, hydroxyl radicals 
cannot all be neutralised by antioxidants. Fe(II) is oxidised to Fe(III) which 
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is insoluble. However, Fe(III) can be converted back to soluble Fe(II) and 
oxygen by reaction with the superoxide radical. This superoxide radical is 
also produced as an intermediate as part of the respiration cycle and is 
sufficiently long lived to be a problem. Thus, Fe(II) can potentially produce 
more hydroxyl radicals causing more damage to surrounding molecules [9]. 
This cycle is known as the Haber-Weiss reaction. This regeneration of Fe(II) 
is shown by Eq. (2). 
Fe(III)+O∙−2→Fe(II)+O2Fe(III)+O2∙−→Fe(II)+O2 

(2) 

Likewise, free copper is toxic as it can potentially take part in the Haber-
Weiss reaction by moving between Cu(I) and Cu(II) generating hydroxyl 
radicals which can damage important surrounding biomolecules such as 
proteins, lipids, nucleic acids and interfering with iron-sulphur clusters. The 
corresponding equations for copper are (3) and (4). 
Cu(I)+H2O2→Cu(II)+HO∙+OH−Cu(I)+H2O2→Cu(II)+HO∙+OH− 

(3) 

Cu(II)+O∙−2→Cu(I)+O2Cu(II)+O2∙−→Cu(I)+O2 
(4) 

Iron-sulphur clusters are essential for the activity of number of cellular 
enzymes with diverse essential functions [10, 11]. Copper can also displace 
zinc from cognate ligands in metalloproteins causing inappropriate protein 
structure/inhibition of enzymatic activity. 

The unfortunate nature of iron, in relation to respiration intermediates, is 
superficially supported by the fact that during inflammation leads to a 
withdrawal of Fe from the body (hypoferric response) [12, 13]. While 
anaemia appears to be a natural response against iron toxicity, prolonged 
anaemia is harmful and a patient may become anaemic for other reasons. 

Natural Regulation of Iron and Copper 

The tight regulation of iron and copper levels and safe transport to sites of 
genesis of metalloproteins ensures that normally the toxic effects are 
minimised. Much progress in understanding iron and copper regulation has 
been made in recent years. A fuller account than given here can be found 
elsewhere [3, 14, 15]. 

Briefly, iron and copper regulation involves sophisticated proteins such as 
ferritin, transferrin (Tf) for iron [16] and cytochrome c oxidase chaperone 
(COX17), copper chaperone for Zn, Cu superoxide dismutase (CCS) and 
antioxidant protein (ATOX) for copper [17]. In fact Rae et al. showed that the 
upper limit of any ‘free pools’ of intracellular copper was far less than one 
atom per cell in normal cases [18•]. A simplified model for the absorption of 
copper by intestinal enterocytes is shown in Fig. 1. 
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Fig. 1 
A simplified model for the absorption of copper by intestinal 
enterocytes. Ctr1 = copper transporter 1, DMT1 = divalent metal transporter 
1, TGN = trans golgi network, MNK = Menkes’ protein 
(ATP7A), IREG1 = iron regulator transporter protein 1 

The cellular import proteins for copper are copper transporter 1 (ctr1) and 
divalent metal transporter 1 (DMT1). The export proteins are ATPase copper 
transporting alpha protein (ATP7A) and ATPase copper transporting beta 
protein (ATP7B). Menkes’ disease is a result of a mutation of ATP7A 
resulting in a failure to mobilise dietary copper. Wilson’s disease is a result of 
a mutation of ATP7B and results in copper overload. 

Copper also plays an important role in the mammalian immune system [2]. 
Macrophages, consequently, have to up-regulate copper in response to 
microbial pathogens when the body is infected. 

The mechanism of iron homeostasis is particularly complex, compared to 
other metals, because iron cannot be simply eliminated as for other metals, 
at least in humans. Iron loss is through the shedding epithelial cells and 
menstruation. Consequently, iron must be absorbed from gut to keep 
balance. 

The protein ferritin stores and transports iron. This remarkable protein can 
store up to approximately 4500 iron atoms. Transferrin (Tf) transports iron. 
Divalent transporter 1 (DMT1), as its name suggests, is a transporter of 
divalent metal ions and so transports Fe(II) as well as Cu(II). 

In higher organisms, iron regulation is a systemic mechanism relying on a 
number of specialised cells with different functions. Iron uptake from the gut 
and release into the system is complex. Import proteins include DMT1 and 
heme carrier protein (HCP1). Export proteins are ferroportins (FPNs). 
Transferrin receptors (Tfrs) in association with ferroxidases as duodenal 
cytochrome B, ceruloplasmin (Cp) and heme carrier protein (HCP1) are 
involved in cellular membrane transportation of iron [14]. Iron is 
transported to the extracellular medium from certain cells by the protein 
ferroportin (FPN). This is important in the highly specialised cells such as 
neurons, erythrocytes, macrophages and enterocytes. 

http://link.springer.com/article/10.1007/s40495-016-0068-8#CR2
http://link.springer.com/article/10.1007/s40495-016-0068-8#CR14
https://static-content.springer.com/image/art:10.1007/s40495-016-0068-8/MediaObjects/40495_2016_68_Fig1_HTML.gif


There are also iron regulatory proteins (IRPs), the most important being 
hepcidin (a hormone) which inhibits iron intake. Hepcidin levels are 
controlled by a gene regulation mechanism which is responsive to iron levels 
and demand. IRPs act on iron-responsive elements (IREs) finely tuning 
synthesis and suppression of the many proteins involved in iron regulation 
according to prevailing circumstances. 

It is not fully understood in what form iron is present in the cytoplasm. It is 
believed that a small amount of iron forms a labile iron pool where Fe(II) is 
loosely bound to ligands of various kinds, as well being tightly and safely 
bound by chaperones. This labile iron pool is a very small fraction of the iron 
and must be tightly controlled to minimise participation in the redox 
reactions described earlier. However, the labile iron pool may be important 
as a ready available source of iron for incorporation into proteins. 
Mitochondria may obtain iron from this pool via the protein mitoferrin. 
There are several iron containing proteins made in the mitochondria as well 
as iron sulphur clusters. 

Pharmaceutical chelators are a poor substitute to the natural mechanisms 
but necessary when the natural mechanisms are dysfunctional as in iron 
overload diseases (haemochromatosis, thalassaemia), anaemia (kidney 
malfunction, infection by parasitic worms, loss of blood), copper overload 
(Wilson’s disease) [19] and copper deficiency diseases (Menkes’ disease, 
occipital horn syndrome) [20]. Metal chelation is a simple way of shielding 
the metal ion to prevent biological damage mimicking the protein 
chaperones providing a therapy for metal poisoning. However, metal 
chelation may prevent the organism from obtaining the essential trace 
quantities of metals it needs. Many pharmaceutical chelators have side 
effects and some have been taken off the market. 

General Factors to Consider in Drug Design of Chelators 

Treatment of metal poisoning by a pharmaceutical involves an integrated 
drug design approach [1••]. The pharmaceutical ideally needs to remove the 
metal from its site of accumulation in the body. This means it has to reach 
the site, chelate the metal and be removed by the organism somehow. Both 
the pharmaceutical chelator and its resulting metal complex must not be 
toxic. There may be competition for the chelate by other metals. Competition 
may be because of a higher binding constant or a higher concentration. 
Predictability is limited [1••]. Sometimes a good candidate for a chelator in 
vitro turns out to be a bad choice in vivo. This may be because endogenous 
substances such as haemoglobin and cytochromes may compete with the 
chelator. The pharmaceutical has to have some resistance to biological 
transformation or breakdown. 

In order to reach the site of the metal, the pharmaceutical may have to cross 
membrane barriers and so must be sufficiently lipophilic but not so much 
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that it becomes stuck in the membrane. Likewise, the metal-pharmaceutical 
complex must be able to leave the site and be excreted by the body. If the 
complex is too bulky, its movement may be hindered. Most chelating agents 
are sensitive to pH, and this can have implications under pathological 
conditions like acidosis or alkalosis [1••]. If the chelating agent only gets into 
extracellular fluid, it may end up mobilising the metal so the metal actually 
accumulates in brain and fatty tissues. 

Combination Therapy 

Sometimes, a combination of two structurally different chelators is used 
when found to be more beneficial than using one chelator alone. The 
potential success of combination therapy is based on the possibility that two 
chelators will act through different mechanisms resulting in two distinct 
effects, or even support each other in a complementary manner leading to 
synergism. It is well known that hydrophobic vitamin E and hydrophilic 
vitamin C are synergetic partly due to being lipid soluble and water soluble, 
respectively. Likewise, hydrophobic and hydrophilic chelators could work 
well due to complementary properties, one removing metals from the 
extracellular regions and the other from the insides of cells and fatty tissues.  

General Chemistry of Chelators 

Metal ions can attach to ligands to form chelates. Ligands donate an electron 
pair to the metal ion to form a dative bond. Some ligands have just one donor 
pair of electrons and attach to the metal ion at one point. These are known as 
monodentate ligands (from Latin meaning ‘one-toothed’). Other ligands may 
donate several pairs of electrons and have several points of attachment to the 
metal ion. These are known as polydentate ligands. A ligand may have more 
than one different potential set of donor atoms. Which atom(s) donates 
might depend on factors such the metal ion present and also pH. Such 
ligands are known as ambidentate. Polydentate ligands can produce a chelate 
(from Greek meaning ‘claw’), a complex where the ligand forms a ring 
around the metal ion [21]. 

Since ligands donate electron pairs, it is useful to use the theory of Lewis 
acids and bases [22]. A Lewis acid is an electron pair acceptor and a Lewis 
base is an electron pair donator. With these definitions, the metal ion acts as 
a Lewis acid and ligands act as Lewis bases. A hard metal ion is loosely 
defined as one which retains valence electrons strongly. A hard metal ion 
usually has a small ion size and a high charge. Fe3+ is a good example of a 
hard metal ion. Conversely, a soft metal ion is one which is relatively large 
and does not retain electrons so firmly. Examples are heavy metal ions like 
mercury and lead but also the transition metal ion Cu+. 

The above definitions are useful for predicting which parts of ambidentate 
ligands attach to which metal ions. As a rule, formation of stable complexes 
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occurs when hard bases react with hard acids or soft bases react with soft 
acids. Hard bases (ligands) contain oxygen atoms as donor atoms. Also 
ligands which contain nitrogen atoms are usually described as hard to 
intermediate. This is consistent to the observed case of Fe(III) and Fe(II) 
interacting with O or N in heme or haemoglobin. The dative bonds formed 
are largely ionic (electrostatic) in character. On the other hand, ligands with 
electron donating groups containing sulphur or selenium are soft bases. In 
general, these form stable complexes with mercury, polonium, arsenic, lead 
and copper(I) which are soft metal ions. The dative bonds formed are 
covalent in character. In fact, mercury and arsenic also bond with the non-
metal carbon to form organomercurials and organoarsenicals [21]. 

This chemistry can also be used to predict which atoms in amino groups bind 
to metals in metalloproteins. The following amino groups and their potential 
sites of metal ion attachment are given in Table 1. 
Table 1 
Potential sites of metal ion attachment to amino acids 

Amino acid Amino acid type Group site of attachment Atom(s) 

Histidine Basic Imidazole N 

Cysteine Non-polara Thiol S 

Methionine Non-polara Sulphide S 

Aspartic acid Acidic Carboxylic acid O 

Glutamic acid Acidic Carboxylic acid O 

Asparagine Uncharged polar Amide O, N 

Glutamine Uncharged polar Amide O, N 

Serine Uncharged polar Hydroxyl O 

Threonine Uncharged polar Hydroxyl O 

Lysine basic Amino N 

aNon-polar amino acids contain side groups which are uncharged at neutral 
pH and relatively non-polar. Their side groups are hydrophobic. Therefore, 
these hydrophobic non-polar amino acids tend to be on inside of protein so 
metal chelation is protective. In contrast, uncharged polar and especially 
acidic and basic aminoacids tend to be on the outside of the protein. Such 
proteins may chelate metals but the metal will be on the outside and exposed 
to the cytoplasm causing likely toxicity. This suggests, at first sight, that only 
soft ions like Cu(I) can be chelated by protein chelators. However, proteins 
are very versatile and could form an inner cavity to where the metal ion is 
somehow transported and safely positioned away from the cytoplasm 
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The implications for copper biochemistry is that Cu(II) prefers oxygen found 
in aspartic and glutamic acid or imidazole nitrogen groups found in histidine 
while Cu(I) prefers thiol and thioether groups found in cysteine or 
methionine [21]. However, non-polar (hydrophobic) amino acids (cysteine 
and methionine) tend to be on inside of protein so metal chelation at these 
amino acid sites is protective. In contrast, uncharged polar and especially 
acidic and basic amino acids (all other amino acids considered above) tend to 
be on the outside of the protein [23]. Such proteins may chelate metals but 
the metal will be on the outside and exposed to the cytoplasm causing likely 
toxicity. This suggests, at first sight, that only soft ions like Cu(I) can be 
chelated by protein chelators. However, proteins are very versatile and could 
form an inner cavity to where the metal ion is somehow transported and 
safely positioned away from the cytoplasm. Nature seems to have succeeded 
in producing protein chelators (chaperones) but the detailed mechanisms of 
how the metal ion is placed in an unexposed part of the protein are 
complicated. The metal ions may attach to the part of the protein in the lipid 
membrane. Clearly, the design of synthetic protein metal ion chelators 
mimicking the natural system of regulation is not a simple task. 

Furthermore, while the above is helpful in recognising biologically affinities, 
it is only based on the thermodynamics of chelation and does not give any 
information about the rates of chelation formation. Reaction rates are very 
relevant in biology. Porphin in haemoglobin is multidentate and 
thermodynamically stable under certain conditions. However, it is also 
important that the iron cannot be removed rapidly from binding sites by an 
exogenous competing chelator. This is a kinetic property and such a chelator 
is referred to as robust [21]. Chelation may involve several steps and may be 
impractically slow. 

Chelators 

Some Well-Known Examples of Chelators 

Some of the problems of chelators used as pharmaceuticals are illustrated by 
some early well-known heavy metal chelators. These have well-known 
problems in clinical use and were mainly used to treat for heavy metals like 
arsenic, cadmium, mercury and lead poisoning (soft metal ions) rather than 
for iron and copper. While not directly relevant, they provide some insights 
into some of the problems of clinical chelators. 

EDTA (=ethylendiamine-tetraacetic acid) is a polydentate chelator. Its 
donor atoms are O and N and so has high affinity for hard metal ions such as 
calcium, magnesium, iron, manganese and zinc. However, it has been used to 
treat lead poisoning. With Fe(III), it forms an open basket complex 
increasing catalytic activity (toxicity). For this reason and other reasons, it is 
unsuitable but important as a standard chelator in the study of chelation 
chemistry. 
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The two salts of EDTA which have been clinically used are Na2EDTA and 
CaNa2EDTA. Both had to be administered intravenously. Na2EDTA has high 
affinity for calcium and so was used for selected cases of hypercalcemia. On 
the other hand, the importance of calcium for metabolism also makes it 
potentially toxic causing severe electrolytic perturbations. It has caused 
serious side effects and deaths. Despite this, it is still sometimes used in the 
mistaken belief that it may remove calcium from atherosclerotic plaques and 
cause breakdown of plaques [24]. CaNa2EDTA was previously used in 
combination with British anti-Lewisite (BAL see below) for lead poisoning 
but treatment was found to be hazardous [25]. Without combination with 
other chelators, CaNa2EDTA has limitations and it has been replaced by other 
better chelators such as D meso-2,3-dimercaptosuccinic acid (MSA) (see 
below). 

BAL (=British anti-Lewisite) (=2,3-dimercaprol) was developed during 
World War II and used clinically since 1949. It has a 3-carbon backbone with 
two –SH groups and a –OH group. It forms a five membered stable complex 
with arsenic and is most effective when administered immediately after 
exposure. It is oily and so not absorbed orally but by a deep painful intra-
muscular injection [1••]. While it quickly mobilises arsenic and mercury, 
removing them from the body, it also causes these metals to be deposited in 
the brain. Furthermore, it causes many common adverse effects such as 
fever, eye inflammation, headaches and nausea. More serious complications 
such as liver damage and elevated blood pressure can also occur [1••]. 

DMSA (=meso-2,3-dimercaptosuccinic acid) was studied more than 20 years 
in China, Japan and Russia before it was recognised in the West. It is a 
dithiol compound and an analogue to BAL. In contrast to BAL, it can be 
administered orally. It is 95 % bound to plasma protein. This is probably due 
to the two –SH groups, one binding to cysteine residue on albumin and the 
other chelating the heavy metal [26]. 

It appears to be the least toxic of dithiol compounds and no sufficient loss of 
essential metals such as zinc, calcium and magnesium are observed. 
However, metabolism of copper may be altered [27]. Furthermore, the 
presence of dithiol groups may give it free-radical scavenging properties 
inhibiting lipid peroxidation. 

Its main disadvantage is that it is unable to cross cell membranes and so can 
only reach its target heavy metal in the extracellular regions. This means that 
DMSA has to be administered shortly after metal poisoning before the heavy 
metals start to penetrate cells. Adverse reactions include gastrointestinal 
discomfort, skin reaction, mild neutropenia and elevated liver enzymes. 
Newer DMSA analogues (esters of DMSA) have been developed which 
improve its chelating and transport properties to the extent of overcoming 
the main disadvantage and crossing cell membranes. 
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Iron Chelators 

Siderophores are small high-affinity iron chelating compounds secreted by 
microorganisms. For example, desferrioxamine or deferoxamine B, also 
known as deferral (Novartis), is produced by Streptomyces spp. [28•]. 
Siderophores compete with the body’s natural reserve of iron in ferritin. 
While deferral has been used in treatment, it is not surprising that 
siderophores cause problems by removing iron from the human’s natural 
iron proteins. This can weaken the system and promote infection by 
siderophore producing microorganism such as Yersinia 
enterocolitica and Candida albicans [29, 30]. 

Phytochemicals are another potential natural source of chelating compounds. 
Curcuminoids have been shown to bind in vitro and alleviate toxicity in 
thalassemic mice [31, 32]. The iron chelating activity of African walnut 
(Tetracarpidium conophorum) and wheat grass (Triticum aestivum) 
extracts have been studied and the results suggest this may have potential for 
iron overload in thalassaemia patients [33–35]. The African walnut contains 
a number of phenolic compounds which are believed to chelate to iron or 
copper [34]. The active chelators in wheat grass appear to be derivatives of 
mugineic acid, 3-hydroxy-mugineic acid and 2′-deoxy-mugineic acid [35]. 
More understanding of the role that chelation plays is needed as these 
natural compounds also affect gene control of foetal haemoglobin which 
helps thalassaemia patients [33]. 

Synthetically produced chelators also show promise. Ibuprofen has been 
shown to protect lipid peroxidation in vitro and phosgene-induced septic 
lung injury in rabbits due to chelation and suppression of ROS [36]. Some 
chelators, such as EDTA, do not fully cover the surface of Fe3+(basket 
complex) [1••]. Thus, this exposes free ion to fluids of organism which may 
contain superoxide radicals and hydrogen peroxide. This may produce 
hydroxyl radicals (Fenton and Haber-Weiss reactions) which may be useful 
in killing cancer cells but harmful to proteins, lipids and DNA. 

Kalinowski and Richardson suggest some potential new iron chelators which 
bind iron in stable (safe) manner [37•]. These are based on compounds like 
catechol, hydroxamate and hydroxypyridinone. The rationale is that they all 
provide hexadentate hydroxypyridinone functionality (like deferiprone) and 
so show promise as bacteriostatic agents in outcompeting siderophores of 
microbes. However, hydroxamate desferal and hydroxypyridinone 
deferiprone are actually assessable by various microorganisms [38]. The 
problem is that conventional chelators can end up providing microbes with 
an iron source. 

Holbein and Mira reported that the new iron-chelating polymer containing 
hydroxypyridinone iron-ligand functionality developed by Chelation Partners 
Inc., known as DIBI, provided Fe-specific growth inhibition of C. albicans. 
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[30]. DIBI is one example of a new approach to providing controlled 
molecular weight chelating-functional polymers. These may provide an 
additional advantage through providing compartmentalised sinks for iron 
thus reducing ROS or its bioavailability to pathogenic cancer or microbial 
cells. 

Some of the most commonly used pharmaceutical chelators for iron are given 
in Table 2 and described in further detail below: 
Table 2 
Some currently commonly used pharmaceutical chelators for treatment of 
iron and copper overload 

http://link.springer.com/article/10.1007/s40495-016-0068-8#CR30
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DFO = deferoxamine is a trihydroxamic acid secreted by Streptomyces 
pilosus. As it is a siderophore, it may compete with the normal system of iron 
control and may increase susceptibility to iron-loving pathogens. However, it 
has low affinity for other metals and is used to treat iron-related diseases 
such as thalassaemia major [39]. DFO needs to be administered mainly 
through intravenous injection or infusion (generally not more than 
80 mg/kg/day). It is distributed mainly extracellularly and binding with 
proteins in the plasma is low (<10 %). It complexes with iron and is excreted 
rapidly as ferrioxamine mostly by the kidneys and one third into bile through 
faeces. Adequate urine output is thus important which can be facilitated by 
dialysis [1••]. 

Usually, DFO is well tolerated but the few cases of side effects include 
opthalamic and auditory toxicity, alterations in blood histology, allergic skin 
reactions and a few adverse effects on the lungs, kidneys and nervous system 
[40]. Also, as previously explained, patients may suffer some susceptibility to 
bacterial and fungal infections. 

L1 = deferiprone = 1,2-dimethyl-3-hydroxypyrid-4-one is a suitable 
alternative to DFO in transfusional iron overload [41]. Clinical studies 
suggest a combination of DFO and L1 for 3 days a week to deplete iron 
overload and improve cardiac function in transfusion-dependent 
thalassaemia patients. DFO is known for reversing cardiac dysfunction. L1 
has also shown cardio-protective effects but it is not clear whether this is a 
result of reducing iron overload or of some other mechanism. 

L1 is administered orally rapidly being absorbed by the stomach and reaching 
circulation quickly. However, there may be a food-drug interaction or other 
factors delaying appearance of drug in the blood. It is mainly metabolised as 
glucuronide conjugates, excreted via the kidneys in the urine having a half-
life of 47–134 min [1••]. However, a wide variation in metabolism and 
clearance has been observed among patients. This has been found to depend 
on iron overload and availability of chelatable iron [42]. An effective dose is 
believed to be 75–100 mg/kg/day in order to maintain a stable iron balance 
and reduce serum ferritin levels within 1 year of treatment in thalassaemia 
patients [1••]. 

Side effects during L1 therapy are arthropathy, gastrointestinal symptoms, 
headache, and moderate zinc deficiency. Adverse reactions can usually be 
reversed by reducing dose or discontinuing administration. Most patients 
have been able to continue with L1 therapy for a long time except, for a few 
patients, severe joint symptoms. The most severe complication is 
agranulocytosis or neutropenia although this is rare [43]. 

NTA = nitrilotriacetic acid is both an iron and copper chelator and is 
described below in copper chelators. 
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Copper Chelators 

Brief descriptions of some copper chelators are given in Table 2 and below. 
The first three are in current pharmaceutical use. The fourth describes a 
group of chelators still undergoing investigation. 

DPA or D-PEN = D-penicillamine = β-β-dimethylcysteine or 3-mercapto-D-
valine is a sulfhydryl with amino acid and degradation product of penicillin. 
L-isomer causes optic neuritis and so not used. It was first used by Walshe to 
treat Wilson’s disease in 1957 [44]. It can be also be used for lead and 
mercury poisoning [45]. It has also been used as an anti-rheumatic drug 
[46••]. DPA can be administered orally or by intravenous route being 50  % 
absorbed orally but mainly extracellularly distributed. A small fraction is 
metabolised in the liver but most excreted unchanged in urine. Half-life 
elimination is 1 to 7 h or more. 

DPA has side effects which disrupt the immune system, connective tissue and 
kidneys and may worsen neurological symptoms of patients with pre-existing 
neurological problems [47, 48]. Low adverse reactions have been reported 
but also more serious ones like thrombocytopenia and leukocytopenia (1–
15 % incidence). In rare cases, aplastic anaemia may also occur. Prolonged 
DPA treatment can lead to anorexia, nausea and vomiting. Other toxic effects 
such as gastrointestinal disturbances (10–30 %), loss of taste (5–30 %), hair 
loss (1–2 %) and partly proteinuria (5–20 %) have also been reported. More 
severe adverse effects are autoimmune phenomena such as pemphigus, DPA-
induced lupus erythematosus, polymyositis/dermatomyositis, membranous 
glomerulopathy and hypersensitivity pneumonitis [49]. Furthermore, DPA is 
a well-recognised teratogen and lathyrogen (causing skeletal, cutaneous and 
pulmonary abnormalities [50]. 

DPA is unsuitable (contraindication) for cases of renal insufficiency, patients 
allergic to penicillin, receiving gold therapy, antimalarial drugs, cytotoxic 
drugs, phenyl-butazone and oxyphenbutazone. 

TETA = tetraethylenetetraamine or trientine is used to treat acute copper 
intoxication. It was introduced in 1982 as an alternative to DPA for patients 
intolerant to DPA [51] and believed to be safer [52•, 53]. Increased urinary 
excretion of copper is observed after its administration. Although it is usually 
administered orally, its absorption is relatively poor (5–18 % systemically 
absorbed). TETA is used to treat Wilson’s disease with a dosage of 0.75–
2 g/day [1••]. 

Its two major metabolites are N1-acetyltriethylenetetramine (MAT) 
and N1,N10-diacetyltriethylenetetramine (DAT). MAT appears to provide the 
role in the mechanism of extracting copper from the system [1••]. 
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NTA = nitrilotriacetic acid is a polyamino carboxylic acid. It will chelate with 
Ca2+, Cu2+ and Fe3+. It is used similarly to EDTA but has the advantage of easy 
biogradability. NTA can be used in the form Na3NTA or FeNTA. 

NTA also is able to mobilise nickel and manganese. While non-mutagenic in 
vitro high doses may produce epigenetic changes, perhaps related to 
sustained cytotoxicity of zinc ion transfer to urinary track. This causes 
damage to vacuolated cells of proximal tubules [54–56]. It is believed that 
both forms are potentially toxic, FeNTA causing iron overload, lipid 
peroxidation and genotoxicity [57, 58] and Na3NTA binding to zinc and 
calcium [59]. 

8-Hydroxyquinolines are a group of non-selective chelators which some 
studies show to have positive effects on Alzheimer’s patients and on in vivo  
tumours as well [60•, 61]. 

Clioquinol is a halogenated derivative of 8-hydroxyquinoline but was 
withdrawn from market in 1970s due to associations with subacute myelo-
optic neuropathy. However, it remains a good prototype substance and 5,7-
dichloro-2-[(dimethylamino)methyl]quinolin-8-ol (PBT2), a derivative of 
clioquinol, is currently under investigation as a marketable drug without the 
risk of neuropathy [62–64•]. 

Conclusion 

Chelation therapy is a poor substitute to the natural polypeptides of the 
normally functioning copper and iron regulation systems. Furthermore, 
chelators may compete with the natural system and hoard copper, iron and 
perhaps other essential metals causing depleted levels for use in natural and 
essential metalloproteins. Therefore, there should be no surprise that 
chelators have side effects according to our current understanding. It is 
perhaps more surprising that they have been moderately successful in some 
cases. 

Some alternatives to currently used chelators are being studied but require 
further research. Is it difficult to determine whether potential chelators are 
acting purely as chelators or are affecting the biochemistry in other ways for 
example some may affect gene expression. 
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