44 research outputs found

    Impaired functional vitamin B6 status is associated with increased risk of lung cancer

    Get PDF
    Circulating vitamin B6 levels have been found to be inversely associated with lung cancer. Most studies have focused on the B6 form pyridoxal 5′-phosphate (PLP), a direct biomarker influenced by inflammation and other factors. Using a functional B6 marker allows further investigation of the potential role of vitamin B6 status in the pathogenesis of lung cancer. We prospectively evaluated the association of the functional marker of vitamin B6 status, the 3-hydroxykynurenine:xanthurenic acid (HK:XA) ratio, with risk of lung cancer in a nested case–control study consisting of 5,364 matched case–control pairs from the Lung Cancer Cohort Consortium (LC3). We used conditional logistic regression to evaluate the association between HK:XA and lung cancer, and random effect models to combine results from different cohorts and regions. High levels of HK:XA, indicating impaired functional B6 status, were associated with an increased risk of lung cancer, the odds ratio comparing the fourth and the first quartiles (OR4th vs. 1st) was 1.25 (95% confidence interval, 1.10–1.41). Stratified analyses indicated that this association was primarily driven by cases diagnosed with squamous cell carcinoma. Notably, the risk associated with HK:XA was approximately 50% higher in groups with a high relative frequency of squamous cell carcinoma, i.e., men, former and current smokers. This risk of squamous cell carcinoma was present in both men and women regardless of smoking status

    Circulating concentrations of biomarkers and metabolites related to Vitamin status, one-carbon and the kynurenine pathways in US, Nordic, Asian, and Australian populations

    No full text
    10.3945/ajcn.116.151241American Journal of Clinical Nutrition10561314-132

    Substrate product ratios of enzymes in the kynurenine pathway measured in plasma as indicators of functional vitamin B-6 status

    No full text
    Background: Tryptophan metabolism through the kynurenine pathway includes 2 vitamin B-6 [pyridoxal 5'-phosphate (PLP)]-dependent enzymes. We recently showed that plasma 3-hydroxykynurenine (HK) was elevated at low PLP concentrations. Objective: We further evaluated and characterized kynurenine-based indexes as possible markers of functional B-vitamin status in plasma. Design: Cross-sectional and longitudinal data were derived from the Western Norway B-vitamin Intervention Trial, including PLP, kynurenine, HK, kynurenic acid (KA), anthranilic acid, xanthurenic acid (XA), and 3-hydroxyanthranilic acid (HAA) measured in plasma at 2 time points. Partial Spearman's correlation, generalized additive models, and receiver operating characteristic (ROC) analysis were used to assess associations of kynurenines with PLP. Results: Ratios HK: XA, HK: HAA, and HK: KA showed markedly stronger negative correlations with PLP than did HK alone (Spearman's rho = -0.36, -0.29, and -0.31 compared with -0.18, respectively). All associations were nonlinear, with the strongest relation at low PLP. In the ROC analysis, areas under the curve for discriminating low PLP (less than the fifth percentile; 18.6 nmol/L) were 0.78, 0.78, and 0.74, respectively, compared with 0.65 for HK. Oral treatment with 40 mg pyridoxin hydrochloride for 28 d reduced the ratios by up to 60%, with strongest reductions for subjects with low plasma PLP at baseline. Whereas HK was associated with kidney function and several inflammatory markers, such associations were abolished or attenuated for the ratios. Conclusion: Plasma values of HK: XA and HK: HAA, which are substrate-product pairs for kynurenine transaminase and kynureninase, respectively, may reflect the intracellular availability of the cofactor (PLP) and, therefore, present as potential markers of functional vitamin B-6 status

    A community-based study on determinants of circulating markers of cellular immune activation and kynurenines: the Hordaland Health Study

    No full text
    Circulating neopterin and kynurenine/tryptophan ratio (KTR) increase during inflammation and serve as markers of cellular immune activation, but data are sparse on other determinants of these markers and metabolites of the kynurenine pathway. We measured neopterin, tryptophan, kynurenine, anthranilic acid, kynurenic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and xanthurenic acid in plasma in two age groups, 45–46 years (n = 3723) and 70–72 years (n = 3329). Differences across categories of the potential determinants, including age, gender, renal function, body mass index (BMI), smoking and physical activity, were tested by Mann–Whitney U-test and multiple linear regression including age group, gender, renal function and lifestyle factors. In this multivariate model, neopterin, KTR and most kynurenines were 20–30% higher in the older group, whereas tryptophan was 7% lower. Men had 6–19% higher concentrations of tryptophan and most kynurenines than women of the same age. Compared to the fourth age-specific estimated glomerular filtration rate (eGFR) quartile, the first quartile was associated with higher concentrations of neopterin (25%) and KTR (24%) and 18–36% higher concentrations of kynurenines, except 3-hydroxyanthranilic acid. Additionally, KTR, tryptophan and all kynurenines, except anthranilic acid, were 2–8% higher in overweight and 3–17% higher in obese, than in normal-weight individuals. Heavy smokers had 4–14% lower levels of tryptophan and most kynurenines than non-smokers. Age and renal function were the strongest determinants of plasma neopterin, KTR and most kynurenines. These findings are relevant for the design and interpretation of studies investigating the role of plasma neopterin, KTR and kynurenines in chronic diseases

    Plasma Biomarkers of Inflammation, the Kynurenine Pathway, and Risks of All-Cause, Cancer, and Cardiovascular Disease Mortality. The Hordaland Health Study

    Get PDF
    We aimed to evaluate 10 biomarkers related to inflammation and the kynurenine pathway, including neopterin, kynurenine:tryptophan ratio, C-reactive protein, tryptophan, and 6 kynurenines, as potential predictors of all-cause and cause-specific mortality in a general population sample. The study cohort was participants involved in a community-based Norwegian study, the Hordaland Health Study (HUSK). We used Cox proportional hazards models to assess associations of the biomarkers with all-cause mortality and competing-risk models for cause-specific mortality. Of the 7,015 participants, 1,496 deaths were recorded after a median follow-up time of 14 years (1998–2012). Plasma levels of inflammatory markers (neopterin, kynurenine:tryptophan ratio, and C-reactive protein), anthranilic acid, and 3-hydroxykynurenine were positively associated with all-cause mortality, and tryptophan and xanthurenic acid were inversely associated. Multivariate-adjusted hazard ratios for the highest (versus lowest) quartiles of the biomarkers were 1.19–1.60 for positive associations and 0.73–0.87 for negative associations. All of the inflammatory markers and most kynurenines, except kynurenic acid and 3-hydroxyanthranilic acid, were associated with cardiovascular disease (CVD) mortality. In this general population, plasma biomarkers of inflammation and kynurenines were associated with risk of all-cause, cancer, and CVD mortality. Associations were stronger for CVD mortality than for mortality due to cancer or other causes
    corecore