97 research outputs found
Equation of State Based Slip Spring Model for Entangled Polymer Dynamics
A mesoscopic, mixed particle- and field-based Brownian dynamics methodology
for the simulation of entangled polymer melts has been developed. Polymeric
beads consist of several Kuhn segments, and their motion is dictated by the
Helmholtz energy of the sample, which is a sum of the entropic elasticity of
chain strands between beads, slip springs, and nonbonded interactions. The
entanglement effect is introduced by the slip springs, which are springs
connecting either nonsuccessive beads on the same chain or beads on different
polymer chains. The terminal positions of slip springs are altered during the
simulation through a kinetic Monte Carlo hopping scheme, with rate-controlled
creation/destruction processes for the slip springs at chain ends. The rate
constants are consistent with the free energy function employed and satisfy
microscopic reversibility at equilibrium. The free energy of nonbonded
interactions is derived from an appropriate equation of state, and it is
computed as a functional of the local density by passing an orthogonal grid
through the simulation box; accounting for it is necessary for reproducing the
correct compressibility of the polymeric material. Parameters invoked by the
mesoscopic model are derived from experimental volumetric and viscosity data or
from atomistic molecular dynamics simulations, establishing a "bottom-up"
predictive framework for conducting slip spring simulations of polymeric
systems of specific chemistry. The mesoscopic simulation methodology is
implemented for the case of cis-1,4-polyisoprene, whose structure, dynamics,
thermodynamics, and linear rheology in the melt state are quantitatively
predicted and validated without a posteriori fitting the results to
experimental measurements.Comment: 80 pages, 17 figure
Self-Consistent-Field Study of Adsorption and Desorption Kinetics of Polyethylene Melts on Graphite and Comparison with Atomistic Simulations
A method is formulated, based on combining self-consistent field theory with
dynamically corrected transition state theory, for estimating the rates of
adsorption and desorption of end-constrained chains (e.g. by crosslinks or
entanglements) from a polymer melt onto a solid substrate. This approach is
tested on a polyethylene/graphite system, where the whole methodology is
parametrized by atomistically detailed molecular simulations. For short-chain
melts, which can still be addressed by molecular dynamics simulations with
reasonable computational resources, the self-consistent field approach gives
predictions of the adsorption and desorption rate constants which are
gratifyingly close to molecular dynamics estimates.Comment: 18 pages, 10 figure
Network dynamics:a computational framework for the simulation of the glassy state
An out-of-equilibrium simulation method for tracking the time evolution of glassy systems (or any other systems that can be described by hopping dynamics over a network of discrete states) is presented. Graph theory and complexity concepts are utilised, alongside the method of the dynamical integration of a Markovian web (G. C. Boulougouris and D. N. Theodorou, J. Chem. Phys., 2007, 127, 084903) in order to provide a unified framework for dealing with the long time-scales of non-ergodic systems. Within the developed formalism, the network of states accessible to the system is considered a finite part of the overall universe, communicating with it through well-defined boundary states. The analytical solution of the probability balance equation proceeds without the need for assuming the existence of an equilibrium distribution among the states of the network and the corresponding survival and escape probabilities (as functions of time) are defined. More importantly, the study of the probability flux through the dividing surface separating the system and its environment reveals the relaxation mechanisms of the system. We apply our approach to the network of states obtained by exploring the energy landscape of an atomistically detailed glassy specimen of atactic polystyrene. The rate constants connecting different basins of the landscape are evaluated by multi-dimensional transition-state-theory. We are able to accurately probe the appearance of the δ- and γ-subglass relaxation mechanisms and their relevant time-scales, out of atomistic simulations. The proposed approach can fill a gap in the rational molecular design toolbox, by providing an alternative to molecular dynamics for structural relaxation in glasses and/or other slow molecular processes (e.g., adsorption or desorption) that involve very distant time-scales.</p
- …