962 research outputs found

    A Retrospective Study of the Investigation of Homicidal Childhood Asphyxial Deaths

    Full text link
    As one of the leading causes of traumatic deaths in newborns, infants, and young children, there is no anatomic or microscopic feature that is pathognomonic for asphyxial deaths. Instead, pathologists rely on investigation information, including confessions and/or witness statements, and potential evidence at the scene. Twenty cases of homicidal newborn, infant, and young children asphyxial deaths were reviewed, which included death and police investigation reports and autopsy reports, as well as histology slides of lung sections. This series of homicidal asphyxial deaths highlight that, in a vast majority of such cases, the final cause and manner of death rulings are dependent on confession by the perpetrator. Furthermore, this series highlights the possible role of histology to help forensic pathologists better certify asphyxial deaths. Finally, this series emphasizes important investigation points and considerations at autopsy during the investigation of asphyxial deaths in newborns, infants, and young children.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144651/1/jfo13666_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144651/2/jfo13666.pd

    Atomic effects in astrophysical nuclear reactions

    Get PDF
    Two models are presented for the description of the electron screening effects that appear in laboratory nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very well with the recent LUNA experimental result for the break-up reaction He3(He3,2p)He4% He3(He3,2p)He^{4}, which so far defies all available theoretical models. Moreover, multi-electron effects that enhance laboratory reactions of the CNO cycle and other advanced nuclear burning stages, are also studied by means of the Thomas-Fermi model, deriving analytical formulae that establish a lower and upper limit for the associated screening energy. The results of the second model, which show a very satisfactory compatibility with the adiabatic approximation ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production

    Loss of Biological Diversity: A Global Crisis Requiring International Solutions: A Report to the National Science Board

    Get PDF
    Executive Summary Biological diversity refers to the variety and variability among living organisms and the ecological complexes in which they occur. Diversity can be defined as the number of different items and their relative frequency. For biological diversity, these items are organized at many levels, ranging from complete ecosystems to the chemical structures that are the molecular basis of heredity. Thus, the term encompasses different ecosystems, species, genes, and their relative abundance (OTA, 1987). There is an ongoing, unprecedented loss of the variety as well as absolute numbers of organisms-from the smallest microorganism to the largest and most spectacular of mammals. Loss of tropical moist forests, which contain over half the total species of organisms, has been well documented by scientists and is now widely reported in the media. Many other ecosystems are also threatened; as human populations and their support systems expand, natural ecosystems at all latitudes are altered or converted. At its meeting on October 15, 1987, the National Science Board concluded that the world\u27s decreasing biological diversity is a critical scientific issue requiring immediate attention. The National Science Board\u27s Committee on International Science was asked to study the scientific and international aspects of the decline of biological diversity and to recommend a course of action. This report describes what the National Science Foundation (NSF) can do to influence the U.S. science and education base, articulates where international scientific cooperation is needed, and suggests roles for other agencies and organizations (both national and international) which have scientific, educational, and management responsibilities. The current disappearance of biota has several causes: the destruction or degradation of entire ecosystems; the accelerating loss of individual species from communities or ecosystems as a result of human disturb;mce; and the loss of genetically distinct parts of populations due to human-induced selective pressures. Although not all parts of the planet are equally affected, the problem is global, and human activities are the primary cause. The loss of biological diversity is important because human existence depends on the biological resources of 1 the earth. Human prosperity is based very largely on the ability to utilize biological diversity: to take advantage of the properties of plants, animals, fungi, and microorganisms for food, clothing, medicine, and shelter. Scientific knowledge about the earth\u27s biological diversity has huge gaps. This lack of information hampers society\u27s ability either to estimate the magnitude of the problem or to prevent further losses. It is impossible to identify all the biological resources at risk, since there is no complete inventory of all the life forms on earth. Approximately 1.4 million species have been given scientific names, but estimates of actual numbers range from 5 million to 80 million species. Although knowledge of some taxa is extensive, the vast majority of groups are largely unknown. The current wave of extinction is destroying both known biotic resources and those still undiscovered. As is proving to be the case with most environmental problems, neither the loss of biological diversity nor its solution is the exclusive province of any one nation. International cooperation is necessary to develop both scientific knowledge and successful mitigation and management strategies. The root causes of the problem include sociological and economic processes which operate on an global scale; a thorough understanding will require investigation and elucidation of both biological and non-biological components. There are several reasons for increasing National Science Foundation (NSF) involvement in biodiversity studies: the economic and social importance of biodiversity (and the risk of opportunity lost due to accelerating extinction); the contributions such leadership can make toward to conservation of biological diversity; the important role of such studies in the international growth of science, especially in tropical countries; the potential impact of such studies on the future course of biology as a whole; and enhancing public awareness of the issues. NSF should assume a scientific leadership position with respect to agencies in the U.S. and throughout the world. By insisting on the central importance of biodiversity, the NSF could encourage collaborative support for the actions recommended below. 1. The Committee believes that the role of the NSF is clear-NSF should, as a matter of National Science Board Policy, provide leadership to undertake the inventory of the world\u27s biodiversity. 2. The scientific basis for conservation biology, restoration ecology, and environmental management must be strengthened. 3. Educational and public awareness programs related to biodiversity need increased support. 4. The economic and social aspects of the biodiversity crisis need additional study. 5. Enhance support for developing country scientists and institutions for biodiversity research and conservation
    corecore