30 research outputs found

    Evolutionary Signatures of Common Human Cis-Regulatory Haplotypes

    Get PDF
    Variation in gene expression may give rise to a significant fraction of inter-individual phenotypic variation. Studies searching for the underlying genetic controls for such variation have been conducted in model organisms and humans in recent years. In our previous effort of assessing conserved underlying haplotype patterns across ethnic populations, we constructed common haplotypes using SNPs having conserved linkage disequilibrium (LD) across ethnic populations. These common haplotypes cluster into a simple evolutionary structure based on their frequencies, defining only up to three conserved clusters termed β€˜haplotype frameworks’. One intriguing preliminary finding was that a significant portion of reported variants strongly associated with cis-regulation tags these globally conserved haplotype frameworks. Here we expand the investigation by collecting genes showing stringently determined cis-association between genotypes and expression phenotypes from major studies. We conducted phylogenetic analysis of current major haplotypes along with the corresponding haplotypes derived from chimpanzee reference sequences. Our analysis reveals that, for the vast majority of such cis-regulatory genes, the tagging SNPs showing the strongest association also tag the haplotype lineages directly separated from ancestry, inferred from either chimpanzee reference sequences or the allele frequency-derived haplotype frameworks, suggesting that the differentially expressed phenotypes were evolved relatively early in human history. Such evolutionary signatures provide keys for a more effective identification of globally-conserved candidate regulatory haplotypes across human genes in future epidemiologic and pharmacogenetic studies

    Three Ways of Combining Genotyping and Resequencing in Case-Control Association Studies

    Get PDF
    We describe three statistical results that we have found to be useful in case-control genetic association testing. All three involve combining the discovery of novel genetic variants, usually by sequencing, with genotyping methods that recognize previously discovered variants. We first consider expanding the list of known variants by concentrating variant-discovery in cases. Although the naive inclusion of cases-only sequencing data would create a bias, we show that some sequencing data may be retained, even if controls are not sequenced. Furthermore, for alleles of intermediate frequency, cases-only sequencing with bias-correction entails little if any loss of power, compared to dividing the same sequencing effort among cases and controls. Secondly, we investigate more strongly focused variant discovery to obtain a greater enrichment for disease-related variants. We show how case status, family history, and marker sharing enrich the discovery set by increments that are multiplicative with penetrance, enabling the preferential discovery of high-penetrance variants. A third result applies when sequencing is the primary means of counting alleles in both cases and controls, but a supplementary pooled genotyping sample is used to identify the variants that are very rare. We show that this raises no validity issues, and we evaluate a less expensive and more adaptive approach to judging rarity, based on group-specific variants. We demonstrate the important and unusual caveat that this method requires equal sample sizes for validity. These three results can be used to more efficiently detect the association of rare genetic variants with disease

    Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22

    Get PDF
    A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, Ξ± = 0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD = 3.60, Ξ± = 0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, Ξ± = 0.29; dominant HLOD = 3.03, Ξ± = 0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, Ξ± = 0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated. Β© 2012 Cicek et al

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's Ο‡2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's Ο‡2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (Ο€ = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (Ο€ = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. Β© 2008 Ding et al

    Missense Mutations in the MEFV Gene Are Associated with Fibromyalgia Syndrome and Correlate with Elevated IL-1Ξ² Plasma Levels

    Get PDF
    BACKGROUND:Fibromyalgia syndrome (FMS), a common, chronic, widespread musculoskeletal pain disorder found in 2% of the general population and with a preponderance of 85% in females, has both genetic and environmental contributions. Patients and their parents have high plasma levels of the chemokines MCP-1 and eotaxin, providing evidence for both a genetic and an immunological/inflammatory origin for the syndrome (Zhang et al., 2008, Exp. Biol. Med. 233: 1171-1180). METHODS AND FINDINGS:In a search for a candidate gene affecting inflammatory pathways, among five screened in our patient samples (100 probands with FMS and their parents), we found 10 rare and one common alleles for MEFV, a gene in which various compound heterozygous mutations lead to Familial Mediterranean Fever (FMF). A total of 2.63 megabases of genomic sequence of the MEFV gene were scanned by direct sequencing. The collection of rare missense mutations (all heterozygotes and tested in the aggregate) had a significant elevated frequency of transmission to affecteds (p = 0.0085, one-sided, exact binomial test). Our data provide evidence that rare missense variants of the MEFV gene are, collectively, associated with risk of FMS and are present in a subset of 15% of FMS patients. This subset had, on average, high levels of plasma IL-1beta (p = 0.019) compared to FMS patients without rare variants, unaffected family members with or without rare variants, and unrelated controls of unknown genotype. IL-1beta is a cytokine associated with the function of the MEFV gene and thought to be responsible for its symptoms of fever and muscle aches. CONCLUSIONS:Since misregulation of IL-1beta expression has been predicted for patients with mutations in the MEFV gene, we conclude that patients heterozygous for rare missense variants of this gene may be predisposed to FMS, possibly triggered by environmental factors

    Host Restriction of Friend Leukemia Virus. Role of the Viral Outer Coat

    No full text
    Host restriction of oncogenesis of RNA tumor viruses in vivo is associated with several gene loci. One of these genes, the Fv-1 locus in mice, is expressed in vitro and may be studied in mouse-embryo cultures that are restrictive or permissive for replication of Friend leukemia virus. Two strains of Friend leukemia virus, N-or B-tropic, show reciprocal ability to replicate successfully in either NIH Swiss (N-type) or BALB/c (B-type) cells that differ at the Fv-1 locus. These two strains of virus and two cell lines form a system to measure host restriction in vitro. Measurement of adsorption of Friend leukemia virus to permissive or restrictive cells reveals no difference in rate or total amount of virus bound. Furthermore, studies with virions of vesicular stomatitis virus phenotypically mixed within an envelope containing Friend leukemia virus protein show no differences in penetration or replication of vesicular stomatitis virus. These results strongly suggest that host restriction of Friend leukemia virus is due to an intracellular event in the viral replication cycle

    Test size and power using detection in subsets.

    No full text
    1<p>Number cases and controls reduced to 100, so sequencing exhausts cases.</p><p>For each line, except the last, 500 cases and 500 controls are generated in 5,000 simulated samples to estimate test size or power for a nominal 0.05-level test comparing the collective frequency of rare alleles. In each scenario, the baseline disease rate is 1%, so relative risk (RR) of 2.5 implies a penetrance of 2.5%. <b>Rare</b> is the number of unknown rare alleles in the population, all assumed to have the same frequency and penetrance. <b>Freq</b> is the total frequency of all rare alleles (<i>e.g.</i> 20 rare alleles with a combined frequency of 0.2 imply a frequency of 0.01 each). We make the simplifying assumption that rare alleles are mutually exclusive. <b>Seq</b> is the total number sequenced, either concentrated in cases or equally divided (balanced) among cases and controls. All four p-value columns are from Fisher's exact text. The first three count the number of cases and controls with any of the rare alleles detected among the indiduals that are sequenced. In the <b>Naive</b> and <b>Corrected</b> columns, all sequences are from controls, but the number of detected distinct rare alleles is subtracted from the case count in the β€˜Corrected’ column. <b>Balanced</b> indicates that the individuals sequenced for allele detection were equally divided between cases and controls. <b>Complete</b> denotes the test based on sequencing all cases and all controls β€” a much larger sequencing effort. The parenthetic numbers indicate 25th and 75th percentiles of the number of rare alleles detected in the cases-only and balanced detection strategies.</p
    corecore