7 research outputs found

    Factors affecting the establishment and growth of annual legumes in semi-arid mediterranean grasslands

    Get PDF
    Abstract Legumes are an important component of mediterranean grasslands with a significant ecological and economic role. The aim of this study was to investigate the factors that affect their establishment and growth and how they survive in a highly variable and unpredictable environment. The research was carried out in a grassland characterised by a semi-arid mediterranean climate and located on a calcareous substrate at about 150 m a.s.l., in Macedonia, northern Greece. It was dominated by annual legumes such as Hippocrepis multisiliquosa, Medicago disciformis, Medicago minima, Onobrychis aequindentata, Trifolium angustifolium, Trifolium campestre and Trifolium scabrum. It was subjected to the following treatments for four consecutive years: prescribed burning, irrigation, digging, cutting, P fertilization and control. Total legume density was measured in late autumn and in the following spring each year, while total legume biomass was measured only in spring. Dominant legume species densities and biomasses were measured only in spring in the last 3 years. Also, monthly precipitation and air temperature were recorded in a nearby weather station. A great reduction of both legume density and biomass occurred at the third growing season due to adverse weather conditions. Among treatments, P fertilization affected the positively annual legume density and biomass. The other treatments such as burning, irrigation, digging and cutting influenced positively or negatively annual legume density and biomass depending on the climatic characteristics of the particular growing season involved. It is concluded that in semi-arid mediterranean grasslands with cold winters, weather conditions strongly interact with human disturbances in affecting establishment and growth of annual legumes

    Adaptive Diversity of Beech Seedlings Under Climate Change Scenarios

    Get PDF
    The ability of beech ( Fagus sylvatica L.) populations to adapt to the ongoing climate change is especially important in the southern part of Europe, where environmental change is expected to be more intense. In this study, we tested the existing adaptive potential of eight beech populations from two provenances in N.E. Greece (Evros and Drama) that show differences in their environmental conditions and biogeographical background. Seedling survival, growth and leaf phenological traits were selected as adaptive traits and were measured under simulated controlled climate change conditions in a growth chamber. Seedling survival was also tested under current conditions in the field. In the growth chamber, simulated conditions of temperature and precipitation for the year 2050 were applied for 3 years, under two different irrigation schemes, where the same amount of water was distributed either frequently (once every week) or non-frequently (once in 20 days). The results showed that beech seedlings were generally able to survive under climate change conditions and showed adaptive differences among provenances and populations. Furthermore, changes in the duration of the growing season of seedlings were recorded in the growth chamber, allowing them to avoid environmental stress and high selection pressure. Differences were observed between populations and provenances in terms of temporal distribution patterns of precipitation and temperature, rather than the average annual or monthly values of these measures. Additionally, different adaptive strategies appeared among beech seedlings when the same amount of water was distributed differently within each month. This indicates that the physiological response mechanisms of beech individuals are very complex and depend on several interacting parameters. For this reason, the choice of beech provenances for translocation and use in afforestation or reforestation projects should consider the small scale ecotypic diversity of the species and view multiple environmental and climatic parameters in connection to each other

    Seed adaptive traits of Fagus sylvatica populations in Northeastern Greece

    No full text
    Fagus sylvatica in Europe is expected to be severely affected by the ongoing climate change. In this article, seed adaptive traits, in terms of morphology and germination, of F. sylvatica populations of different postglacial lineage and intrapopulation genetic diversity were evaluated. Eight plots from two geographical provenances, Evros and Drama, were selected. Provenance shaped both morphology and germination patterns, but the effect was more pronounced on germination. Seeds from Drama were larger and heavier than those from Evros but exhibited a higher degree of dormancy and slower germination. High among-plots variability on morphology and germination was also observed, especially in Evros. This higher variability was consistent with the higher level of genetic diversity observed at genomic and chloroplast DNA markers at small or larger spatial scales from previous published studies on the same plots. Results suggested the existence of different seed adaptation strategies, mainly between provenances, as a result of possible adaptation to different environmental conditions, whereas a possible influence of a generally complex pattern of admixture between different beech subspecies and postglacial lineages could not be excluded

    Basics of Sustainable Diets and Tools for Assessing Dietary Sustainability: A Primer for Researchers and Policy Actors

    No full text
    Climate change can have economic consequences, affecting the nutritional intake of populations and increasing food insecurity, as it negatively affects diet quality parameters. One way to mitigate these consequences is to change the way we produce and consume our food. A healthy and sustainable diet aims to promote and achieve the physical, mental, and social well-being of the populations at all life stages, while protecting and safeguarding the resources of the planet and preserving biodiversity. Over the past few years, several indexes have been developed to evaluate dietary sustainability, most of them based on the EAT-Lancet reference diet. The present review explains the problems that arise in human nutrition as a result of climate change and presents currently available diet sustainability indexes and their applications and limitations, in an effort to aid researchers and policy actors in identifying aspects that need improvement in the development of relevant indexes. Overall, great heterogeneity exists among the indicators included in the available indexes and their methodology. Furthermore, many indexes do not adequately account for the diets’ environmental impact, whereas others fall short in the economic impact domain, or the ethical aspects of sustainability. The present review reveals that the design of one environmentally friendly diet that is appropriate for all cultures, populations, patients, and geographic locations is a difficult task. For this, the development of sustainable and healthy diet recommendations that are region-specific and culturally specific, and simultaneously encompass all aspects of sustainability, is required

    Changes in Watering Frequency Stimulate Differentiated Adaptive Responses among Seedlings of Different Beech Populations

    No full text
    Seasonality, rather than annual precipitation levels, is expected to affect the adaptive responses of plant populations under future climate change. To estimate adaptive traits’ variation, we conducted a common garden experiment with two beech populations from contrasting climatic origins (Evros with longer drought intervals during summer and higher precipitation seasonality, and Drama representing a more temperate ecosystem). We simulated two different watering treatments (frequent vs. non-frequent) on beech seedlings, according to predicted monthly precipitation levels expected to prevail in 2050 by the CSIRO MK3.6 SRESA1B model, considering as reference area a natural beech stand in Mt. Rodopi, Greece. A series of morphological and stem anatomical traits were measured. Seedling survival was greater for the Evros population compared to that of Drama under non-frequent watering, while no difference in survival was detected under frequent watering. Leaf morphological traits were not generally affected by watering frequency except for leaf circularity, which was found to be lower under non-frequent watering for both populations. Stomata density in leaves was found to be higher in the Evros population and lower in the Drama population under non-frequent watering than frequent. Stem anatomical traits were higher under non-frequent watering for Evros but lower for the Drama population. Multivariate analyses clearly discriminated populations under non-frequent rather than frequent watering, indicating genetic adaptation to the population’s environment of origin

    Toward Big Data Manipulation for Grape Harvest Time Prediction by Intervals' Numbers Techniques

    No full text
    The automation of agricultural production calls for accurate prediction of the harvest time. Our interest in particular here is in grape harvest time. Nevertheless, the latter prediction is not trivial also due to the scale of data involved. We propose a novel neural network architecture that processes whole histograms induced from digital images. A histogram is represented by an Intervals' Number (IN); hence, all-order data statistics are represented. In conclusion, the proposed IN Neural Network, or INNN for short, emerges with the capacity of predicting an IN from past INs. We demonstrate a proof-of-concept, preliminary application on a time series of digital images of grapes taken during their growth to maturity. Compared to a conventional Back Propagation Neural Network (BPNN), the results by INNN are superior not only in terms of prediction accuracy but also because the BPNN predicts only first-order data statistics, whereas the INNN predicts all-order data statistics
    corecore