7 research outputs found

    The European Lake Microbiome: A Study in Complexity

    Get PDF
    While it is known that microbes play many indispensable roles in ecosystems, the relationship between microbiomes and their environment is far from being well-understood. In part, this is the case because the methods necessary for studying environmental microbiomes, such as Next- Generation Sequencing and high-dimensional Machine Learning, have been developed relatively recently. However, the complex nature of ecosystems and environmental microbiomes acts as a further barrier to progress in this field of research. This thesis develops methods and concepts used to gain insight into the ecology of micro- biomes in lakes. It is based around two metabarcoding datasets sampled from lakes in Austria and the whole of Europe, respectively, and attempts to elucidate the microbiome’s relationship to environmental parameters. To this end, a tool for GPS-based dataset enhancement and a ma- chine learning framework for measuring microbiome covariation is developed. Building on this, the latent structure of the microbiome is estimated. In the discussion, a novel theory of informa- tion transmission in complex environments is described. Taken together, the work included herein presents a thorough analysis of the European lake microbiome that takes the complexity of the study object into account. The results point to- wards parameters that act as drivers of lake microbiome structure as well as microorganisms that might act as keystone species for ecosystem functioning. Furthermore, this work might provide the basis for considerable future progress in the study of environmental microbiomes

    SEDE-GPS: socio-economic data enrichment based on GPS information

    No full text
    Abstract Background Microbes are essentail components of all ecosystems because they drive many biochemical processes and act as primary producers. In freshwater ecosystems, the biodiversity in and the composition of microbial communities can be used as indicators for environmental quality. Recently, some environmental features have been identified that influence microbial ecosystems. However, the impact of human action on lake microbiomes is not well understood. This is, in part, due to the fact that environmental data is, albeit theoretically accessible, not easily available. Results In this work, we present SEDE-GPS, a tool that gathers data that are relevant to the environment of an user-provided GPS coordinate. To this end, it accesses a list of public and corporate databases and aggregates the information in a single file, which can be used for further analysis. To showcase the use of SEDE-GPS, we enriched a lake microbial ecology sequencing dataset with around 18,000 socio-economic, climate, and geographic features. The sources of SEDE-GPS are public databases such as Eurostat, the Climate Data Center, and OpenStreetMap, as well as corporate sources such as Twitter. Using machine learning and feature selection methods, we were able to identify features in the data provided by SEDE-GPS that can be used to predict lake microbiome alpha diversity. Conclusion The results presented in this study show that SEDE-GPS is a handy and easy-to-use tool for comprehensive data enrichment for studies of ecology and other processes that are affected by environmental features. Furthermore, we present lists of environmental, socio-economic, and climate features that are predictive for microbial biodiversity in lake ecosystems. These lists indicate that human action has a major impact on lake microbiomes. SEDE-GPS and its source code is available for download at http://SEDE-GPS.heiderlab.d

    SEDE-GPS: socio-economic data enrichment based on GPS information

    No full text

    Design and Assembly of DNA Sequence Libraries for Chromosomal Insertion in Bacteria Based on a Set of Modified MoClo Vectors

    No full text
    Efficient assembly of large DNA constructs is a key technology in synthetic biology. One of the most popular assembly systems is the MoClo standard in which restriction and ligation of multiple fragments occurs in a one-pot reaction. The system is based on a smart vector design and type IIs restriction enzymes, which cut outside their recognition site. While the initial MoClo vectors had been developed for the assembly of multiple transcription units of plants, some derivatives of the vectors have been developed over the last years. Here we present a new set of MoClo vectors for the assembly of fragment libraries and insertion of constructs into bacterial chromosomes. The vectors are accompanied by a computer program that generates a degenerate synthetic DNA sequence that excludes “forbidden” DNA motifs. We demonstrate the usability of the new approach by construction of a stable fluorescence repressor operator system (FROS)

    Year-Long Microbial Succession on Microplastics in Wastewater: Chaotic Dynamics Outweigh Preferential Growth

    No full text
    Microplastics are a globally-ubiquitous aquatic pollutant and have been heavily studied over the last decade. Of particular interest are the interactions between microplastics and microorganisms, especially the pursuit to discover a plastic-specific biome, the so-called plastisphere. To follow this up, a year-long microcosm experimental setup was deployed to expose five different microplastic types (and silica beads control) to activated aerobic wastewater in controlled conditions, with microbial communities being measured four times over the course of the year using 16S rDNA (bacterial) and ITS (fungal) amplicon sequencing. The biofilm community shows no evidence of a specific plastisphere, even after a year of incubation. Indeed, the microbial communities (particularly bacterial) show a clear trend of increasing dissimilarity between plastic types as time increases. Despite little evidence for a plastic-specific community, there was a slight grouping observed for polyolefins (PE and PP) in 6–12-month biofilms. Additionally, an OTU assigned to the genus Devosia was identified on many plastics, increasing over time while showing no growth on silicate (natural particle) controls, suggesting this could be either a slow-growing plastic-specific taxon or a symbiont to such. Both substrate-associated findings were only possible to observe in samples incubated for 6–12 months, which highlights the importance of studying long-term microbial community dynamics on plastic surfaces

    Establishing a System for Testing Replication Inhibition of the Vibrio cholerae Secondary Chromosome in Escherichia coli

    No full text
    Regulators of DNA replication in bacteria are an attractive target for new antibiotics, as not only is replication essential for cell viability, but its underlying mechanisms also differ from those operating in eukaryotes. The genetic information of most bacteria is encoded on a single chromosome, but about 10% of species carry a split genome spanning multiple chromosomes. The best studied bacterium in this context is the human pathogen Vibrio cholerae, with a primary chromosome (Chr1) of 3 M bps, and a secondary one (Chr2) of about 1 M bps. Replication of Chr2 is under control of a unique mechanism, presenting a potential target in the development of V. cholerae-specific antibiotics. A common challenge in such endeavors is whether the effects of candidate chemicals can be focused on specific mechanisms, such as DNA replication. To test the specificity of antimicrobial substances independent of other features of the V. cholerae cell for the replication mechanism of the V. cholerae secondary chromosome, we establish the replication machinery in the heterologous E. coli system. We characterize an E. coli strain in which chromosomal replication is driven by the replication origin of V. cholerae Chr2. Surprisingly, the E. coli ori2 strain was not inhibited by vibrepin, previously found to inhibit ori2-based replication

    Control of Vibrio vulnificus proliferation in the Baltic Sea through eutrophication and algal bloom management

    No full text
    Due to climate change the pathogenic bacterium Vibrio vulnificus proliferates along brackish coastlines, posing risks to public health, tourism, and aquaculture. Here we investigated previously suggested regulation measures to reduce the prevalence of V. vulnificus, locally through seagrass and regionally through the reduction of eutrophication and consequential formation of algal blooms. Field samples collected in the summer of 2021 covered the salinity and eutrophication gradients of the Baltic Sea, one of the largest brackish areas worldwide. Physico-, biological- and hydrochemical parameters were measured and variables explaining V. vulnificus occurrence were identified by machine learning. The best V. vulnificus predictors were eutrophication-related features, such as particulate organic carbon and nitrogen, as well as occurrence of potential phytoplankton blooms and associated species. V. vulnificus abundance did not vary significantly between vegetated and non-vegetated areas. Thus, reducing nutrient inputs could be an effective method to control V. vulnificus populations in eutrophied brackish coasts
    corecore