33 research outputs found

    Chemical analysis and aqueous solution properties of Charged Amphiphilic Block Copolymers PBA-b-PAA synthesized by MADIX

    Full text link
    We have linked the structural and dynamic properties in aqueous solution of amphiphilic charged diblock copolymers poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA, synthesized by controlled radical polymerization, with the physico-chemical characteristics of the samples. Despite product imperfections, the samples self-assemble in melt and aqueous solutions as predicted by monodisperse microphase separation theory. However, the PBA core are abnormally large; the swelling of PBA cores is not due to AA (the Flory parameter chiPBA/PAA, determined at 0.25, means strong segregation), but to h-PBA homopolymers (content determined by Liquid Chromatography at the Point of Exclusion and Adsorption Transition LC-PEAT). Beside the dominant population of micelles detected by scattering experiments, capillary electrophoresis CE analysis permitted detection of two other populations, one of h-PAA, and the other of free PBA-b-PAA chains, that have very short PBA blocks and never self-assemble. Despite the presence of these free unimers, the self-assembly in solution was found out of equilibrium: the aggregation state is history dependant and no unimer exchange between micelles occurs over months (time-evolution SANS). The high PBA/water interfacial tension, measured at 20 mN/m, prohibits unimer exchange between micelles. PBA-b-PAA solution systems are neither at thermal equilibrium nor completely frozen systems: internal fractionation of individual aggregates can occur.Comment: 32 pages, 16 figures and 4 tables submitted to Journal of Interface and Colloidal Scienc

    The mechanism of force transmission at bacterial focal adhesion complexes

    Get PDF
    Various rod-shaped bacteria mysteriously glide on surfaces in the absence of appendages such as flagella or pili. In the deltaproteobacterium Myxococcus xanthus, a putative gliding motility machinery (the Agl–Glt complex) localizes to so-called focal adhesion sites (FASs) that form stationary contact points with the underlying surface. Here we show that the Agl–Glt machinery contains an inner-membrane motor complex that moves intracellularly along a right-handed helical path; when the machinery becomes stationary at FASs, the motor complex powers a left-handed rotation of the cell around its long axis. At FASs, force transmission requires cyclic interactions between the molecular motor and the adhesion proteins of the outer membrane via a periplasmic interaction platform, which presumably involves contractile activity of motor components and possible interactions with peptidoglycan. Our results provide a molecular model of bacterial gliding motility

    Charged diblock copolymers at interfaces: Micelle dissociation upon compression

    No full text
    We use grazing incidence X-ray scattering to study the surface micellization of charged amphiphilic diblock copolymers poly(styrene-block-acrylic acid) at the air-water interface. Scattering interference peaks are consistent with the formation of hexagonally packed micelles. The remarkable increase of inter-micelle distance upon compression is explained by a dissociation of micelles into a brush. Hence, surface micelles reorganize, whereas micelles of the same copolymers in solutions are “frozen”. We show indeed that the energetic cost of unimer extraction from micelles is much lower for surface than for solution. Finally, a model combining electrostatic interactions and micelle/brush equilibrium explains surface pressure vs. area without free parameters

    Interfacial Activity of Phosphonated-PEG Functionalized Cerium Oxide Nanoparticles

    No full text
    9 pagesInternational audienceIn a recent publication, we have highlighted the potential of phosphonic acid terminated PEG oligomers to functionalize strong UV absorption cerium oxide nanoparticles,1 which yield suspensions that are stable in aqueous or organic solvents and are redispersible in different solvents after freeze-drying. In the present work, we highlight the interfacial activity of the functional ceria nanoparticles and their potential to modify hydrophobic surfaces. We first investigated the phosphonated-PEG amphiphilic oligomers behavior as strong surface active species forming irreversibly adsorbed layers. We then show that the oligomers interfacial properties translate to the functional nanoparticles. In particular, the addition of a small fraction of phosphonated-PEG oligomers with an extra C16 aliphatic chain (stickers) into the formulation enabled the tuning of (i) the nanoparticles adsorption at the air/water, polystyrene/water, oil/water interfaces and (ii) the particle/particle interaction in aqueous solutions. We also found that dense and closely packed two-dimensional monolayers of nanoceria can be formed by spontaneous adsorption or surface compression using a Langmuir trough. A hexagonal organization controlled by reversible and repulsive interaction has been characterized by GISAXS. Mono- or multilayers can also be stably formed or transferred on solid surfaces. Our results are key features in the field of polymer surface modification, solid-stabilized emulsions (Pickering), or supracolloidal assemblies

    Interfacial Activity of Phosphonated-PEG Functionalized Cerium Oxide Nanoparticles

    No full text
    In a recent publication, we have highlighted the potential of phosphonic acid terminated PEG oligomers to functionalize strong UV absorption cerium oxide nanoparticles, which yield suspensions that are stable in aqueous or organic solvents and are redispersible in different solvents after freeze-drying. In the present work, we highlight the interfacial activity of the functional ceria nanoparticles and their potential to modify hydrophobic surfaces. We first investigated the phosphonated-PEG amphiphilic oligomers behavior as strong surface active species forming irreversibly adsorbed layers. We then show that the oligomers interfacial properties translate to the functional nanoparticles. In particular, the addition of a small fraction of phosphonated-PEG oligomers with an extra C16 aliphatic chain (<i>stickers</i>) into the formulation enabled the tuning of (i) the nanoparticles adsorption at the air/water, polystyrene/water, oil/water interfaces and (ii) the particle/particle interaction in aqueous solutions. We also found that dense and closely packed two-dimensional monolayers of nanoceria can be formed by spontaneous adsorption or surface compression using a Langmuir trough. A hexagonal organization controlled by reversible and repulsive interaction has been characterized by GISAXS. Mono- or multilayers can also be stably formed or transferred on solid surfaces. Our results are key features in the field of polymer surface modification, solid-stabilized emulsions (Pickering), or supracolloidal assemblies
    corecore