25 research outputs found

    Contactless and spatially structured cooling by directing thermal radiation

    Get PDF
    In recent years, radiative cooling has become a topic of considerable interest for applications in the context of thermal building management and energy saving. The idea to direct thermal radiation in a controlled way to achieve contactless sample cooling for laboratory applications, however, is scarcely explored. Here, we present an approach to obtain spatially structured radiative cooling. By using an elliptical mirror, we are able to enhance the view factor of radiative heat transfer between a room temperature substrate and a cold temperature landscape by a factor of 92. A temperature pattern and confined thermal gradients with a slope of \~ 0.2~°C/mm are created. The experimental applicability of this spatially structured cooling approach is demonstrated by contactless supercooling of hexadecane in a home-built microfluidic sample. This novel concept for structured cooling yields numerous applications in science and engineering as it provides a means of controlled temperature manipulation with minimal physical disturbance

    Plasmonic Nanoagents in Biophysics and Biomedicine

    Get PDF
    The significant rise in implementation and applications of plasmonic nanosystems in biophysics, biochemistry, and medicine has culminated in the emergence of refined plasmonic enabling reagents, or “nanoagents”. These are defined as tools that allow researchers to not only investigate, but also actively manipulate biological processes and complex biosystems, such as living cells, on the nanoscale. This development is based on a combination of sensing capabilities, photothermal control, and optical force manipulation offered by metallic nanoparticles. The article reviews the trajectory that plasmonic nanoagents have taken in recent years and highlights seminal recent examples of their application, such as optical sensing both in vitro and in vivo, optical control of biomolecular interactions and protein function, the manipulation of lipid membrane properties, and the possibility of guiding cellular behavior.Fil: Huergo, María Ana Cristina. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Schuknecht, Francis. Ludwig Maximilians Universitat; AlemaniaFil: Zhang, Jinhua. Ludwig Maximilians Universitat; AlemaniaFil: Lohmüller, Theobald. Ludwig Maximilians Universitat; Alemani

    Reversible control of current across lipid membranes by local heating

    Get PDF
    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels

    Reversible control of current across lipid membranes by local heating

    Get PDF
    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels

    Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives

    Get PDF
    This feature article discusses the optical trapping and manipulation of plasmonic nanoparticles, an area of current interest with potential applications in nanofabrication, sensing, analytics, biology and medicine. We give an overview over the basic theoretical concepts relating to optical forces, plasmon resonances and plasmonic heating. We discuss fundamental studies of plasmonic particles in optical traps and the temperature profiles around them. We place a particular emphasis on our own work employing optically trapped plasmonic nanoparticles towards nanofabrication, manipulation of biomimetic objects and sensing

    Twisted light Michelson interferometer for high precision refractive index measurements

    Get PDF
    Using orbital angular momentum beams in a Michelson interferometer opens the possibility for non-invasive measurements of refractive index changes down to 10(-6) refractive index units. We demonstrate the application of a twisted light interferometer to directly measure the concentration of NaCl and glucose solutions label-free and in situ and to monitor temperature differences in the mK-mu K range. From these measurements we can extract a correlation of the refractive index to concentration and to temperature from a liquid sample which is in good agreement with literature. Applying this type of twisted light interferometry yields a novel, robust, and easily implementable method for in situ monitoring of concentration and temperature changes in microfluidic samples. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreemen

    Supported Membranes Embedded with Fixed Arrays of Gold Nanoparticles

    Get PDF
    10.1021/nl202847tNano Letters11114912-491

    Trans-membrane Fluorescence Enhancement by Carbon Dots: Ionic Interactions and Energy Transfer

    Get PDF
    We report on trans-membrane interactions between blueemitting carbon dots (CDs) and fluorescein. Hydrophobic CDs with a positive surface charge are embedded as-synthesized in the lipophilic sheet of the bilayer membrane of large synthetic phospholipid vesicles. The vesicles are prepared by mixing DOPC phospholipids and lipid molecules that contain anionic fluorescein attached to their hydrophilic head. Due to attractive electrostatic interactions, the CDs and fluorescein conjoin within the vesicle membrane, which leads to photoluminescence enhancement of fluorescein and facilitates trans-membrane energy transfer between the CDs and the dye.Fil: Pritzl, Stefanie D.. Ludwig Maximilians Universitat; AlemaniaFil: Pschunder, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Ehrat, Florian. Ludwig Maximilians Universitat; AlemaniaFil: Bhattacharyya, Santanu. Ludwig Maximilians Universitat; AlemaniaFil: Lohmüller, Theobald. Ludwig Maximilians Universitat; AlemaniaFil: Huergo, María Ana Cristina. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Feldmann, Jochen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Trans-membrane fluorescence enhancement by carbon dots: ionic interactions and energy transfer

    Get PDF
    We report on trans-membrane interactions between blue-emitting carbon dots (CDs) and fluorescein. Hydrophobic CDs with a positive surface charge are embedded as-synthesized in the lipophilic sheet of the bilayer membrane of large synthetic phospholipid vesicles. The vesicles are prepared by mixing DOPC phospholipids and lipid molecules that contain anionic fluorescein attached to their hydrophilic head. Due to attractive electrostatic interactions, the CDs and fluorescein conjoin within the vesicle membrane, which leads to photoluminescence enhancement of fluorescein and facilitates trans-membrane energy transfer between the CDs and the dye.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
    corecore