188 research outputs found

    Molecular markers for cervical cancer screening

    Get PDF
    This review gives an overview of current screening practices for cervical cancer. In the introduction, we will cover approaches of population screening focusing on high-risk Human Papilloma Virus (hrHPV) and the need for a better triage assay. We will further assess the impact of current vaccination programs on screening. Subsequently, the review will cover various technological aspects of nucleic acid- and protein-based biomarker assays. We will then detail different molecular markers in view of their use in triage assays, emphasizing epigenetic and protein markers. Finally, we will place this in the context of cost-effectiveness considerations in view of their implementation in high- as well as in low- to middle-income countries. Introduction: Cervical cancer remains a significant healthcare problem, notably in low- to middle-income countries. While a negative test for hrHPV has a predictive value of more than 99.5%, its positive predictive value is less than 10% for CIN2+ stages. This makes the use of a so-called triage test indispensable for population-based screening to avoid referring women, that are ultimately at low risk of developing cervical cancer, to a gynecologist. This review will give an overview of tests that are based on epigenetic marker panels and protein markers. Areas covered: There is a medical need for molecular markers with a better predictive value to discriminate hrHPV-positive women that are at risk of developing cervical cancer from those that are not. Areas covered are epigenetic and protein markers as well as health economic considerations in view of the fact that most cases of cervical cancer arise in low-to-middle-income countries. Expert opinion: While there are biomarker assays based on changes at the nucleic acid (DNA methylation patterns, miRNAs) and at the protein level, they are not widely used in population screening. Combining nucleic acid-based and protein-based tests could improve the overall specificity for discriminating CIN2+ lesions that carry a low risk of progressing to cervical cancer within the screening interval from those that carry an elevated risk. The challenge is to reduce unnecessary referrals without an undesired increase in false-negative diagnoses resulting in cases of cervical cancer that could have been prevented. A further challenge is to develop tests for low-and middle-income countries, which is critical to reduce the worldwide burden of cervical cancer

    Consumption of nitrate-rich beetroot juice with or without vitamin C supplementation increases the excretion of urinary nitrate, nitrate, and N-nitroso compounds in humans

    Get PDF
    Consumption of nitrate-rich beetroot juice (BRJ) by athletes induces a number of beneficial physiological health effects, which are linked to the formation of nitric oxide (NO) from nitrate. However, following a secondary pathway, NO may also lead to the formation of N-nitroso compounds (NOCs), which are known to be carcinogenic in 39 animal species. The extent of the formation of NOCs is modulated by various other dietary factors, such as vitamin C. The present study investigates the endogenous formation of NOCs after BRJ intake and the impact of vitamin C on urinary NOC excretion. In a randomized, controlled trial, 29 healthy recreationally active volunteers ingested BRJ with or without additional vitamin C supplements for one week. A significant increase of urinary apparent total N-nitroso Compounds (ATNC) was found after one dose (5 to 47 nmol/mmol: p < 0.0001) and a further increase was found after seven consecutive doses of BRJ (104 nmol/mmol: p < 0.0001). Vitamin C supplementation inhibited ATNC increase after one dose (16 compared to 72 nmol/mmol, p < 0.01), but not after seven daily doses. This is the first study that shows that BRJ supplementation leads to an increase in formation of potentially carcinogenic NOCs. In order to protect athlete’s health, it is therefore important to be cautious with chronic use of BRJ to enhance sports performances

    A Co-expression Analysis of the Placental Transcriptome in Association With Maternal Pre-pregnancy BMI and Newborn Birth Weight

    Get PDF
    Maternal body mass index (BMI) before pregnancy is known to affect both fetal growth and later-life health of the newborn, yet the implicated molecular mechanisms remain largely unknown. As the master regulator of the fetal environment, the placenta is a valuable resource for the investigation of processes involved in the developmental programming of metabolic health. We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal BMI and fetal growth. We used RNA microarray (Agilent 8 × 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using a weighted gene co-expression network analysis, we identified 17 correlated gene modules. Three of these modules were associated with both maternal pre-pregnancy BMI and newborn birth weight. A gene cluster enriched for genes involved in immune response and myeloid cell differentiation was positively associated with maternal BMI and negatively with low birth weight. Two other gene modules, upregulated in association with maternal BMI as well as birth weight, were involved in processes related to organ and tissue development, with blood vessel morphogenesis and extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-, angiogenesis-, and extracellular matrix-related genes were among the identified hub genes. The association between maternal BMI and newborn weight was significantly mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124, COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity in adults, our observation in placental tissue suggests that biological processes may be affected from prenatal life onwards, thereby identifying new molecular processes linking maternal BMI and fetal metabolic programming

    A Comparative Study on the WCRF International/University of Bristol Methodology for Systematic Reviews of Mechanisms Underpinning Exposure-Cancer Associations

    Get PDF
    The World Cancer Research Fund (WCRF) International and the University of Bristol have developed a novel framework for providing an overview of mechanistic pathways and conducting a systematic literature review of the biologically plausible mechanisms underlying exposure-cancer associations. Two teams independently applied the two-stage framework on mechanisms underpinning the association between body fatness and breast cancer to test the framework feasibility and reproducibility as part of a WCRF-commissioned validation study. In stage I, a "hypothesis-free" approach was used to provide an overview of potential intermediate mechanisms between body fatness and breast cancer. Dissimilar rankings of potential mechanisms were observed between the two teams due to different applications of the framework. In stage II, a systematic review was conducted on the insulin-like growth factor 1 receptor (IGF1R) chosen as an intermediate mechanism. Although the studies included differed, both teams found inconclusive evidence for the body fatness-IGF1R association and modest evidence linking IGF1R to breast cancer, and therefore concluded that there is currently weak evidence for IGF1R as mechanism linking body fatness to breast cancer. The framework is a good starting point for conducting systematic reviews by integrating evidence from mechanistic studies on exposure-cancer associations. On the basis of our experience, we provide recommendations for future users. (C) 2017 AACR

    Quality of life assumptions determine which cervical cancer screening strategies are cost-effective

    Get PDF
    Quality-adjusted life years are used in cost-effectiveness analyses (CEAs). To calculate QALYs, a "utility" (0-1) is used for each health state induced or prevented by the intervention. We aimed to estimate the impact of quality of life (QoL) assumptions (utilities and durations of health states) on CEAs of cervical cancer screening. To do so, 12 alternative sets of utility assumptions were retrieved from published cervical cancer screening CEAs. Two additional sets were based on empirical QoL data that were integrally obtained through two different measures (SF-6D and EQ-5D) from eight groups of women (total n=3,087), from invitation for screening to diagnosis with cervical cancer. Per utility set we calculated the number of quality-adjusted days lost (QADL) for each relevant health state in cervical cancer screening, by multiplying the study-specific assumed disutilities (i.e., 1-utility) with study-specific durations of the loss in QoL, resulting in 14 "QADL-sets." With microsimulation model MISCAN we calculated cost-effectiveness of 342 alternative screening programs (varying in primary screening test [Human Papillomavirus (HPV) vs. cytology], starting ages, and screening interval) for each of the 14 QADL-sets. Utilities used in CEAs appeared to differ largely. We found that ten QADL-sets from the literature resulted in HPV and two in cytology as preferred primary test. The SF-6D empirical QADL-set resulted in cytology and the EQ-5D one in HPV as preferred primary test. In conclusion, assumed utilities and health state durations determine cost-effectiveness of cervical cancer screening. Also, the measure used to empirically assess utilities can be crucial for CEA conclusions
    • …
    corecore