104 research outputs found

    Clustering of H2SO4 with BX3 (X = H, F, Cl, Br, CN, OH) compounds creates strong acids and superacids

    Get PDF
    The interaction of H2SO4 with boron compounds including BH3, BF3, BCl3, BBr3, B(CN)(3) and B(OH)(3) was studied computationally using the omega B97xD density functional. All the BX3 compounds except B(OH)(3) bind to H2SO4 via both SOH center dot center dot center dot X hydrogen bonds, and interactions between the B atoms and the S=O oxygen atoms. B(OH)(3) interacts with H2SO4 solely through hydrogen bonds. B(CN)(3) and BCl3 exhibit the strongest and weakest interactions with H2SO4, respectively. Natural bond orbital (NBO) analysis shows that the relative weakness of the H2SO4- BCl3 interaction may be due to pi-bonding between the B and Cl atoms, and the occupation of the p(z) orbital of the B atom. The strong electron withdrawing groups CN in B(CN)(3) intensify electron deficiency of B atom and promote its tendency to capture electrons of oxygen atom of O=S group. Atoms in molecules (AIM) calculations show bond critical points (BCP) between the X groups of BX3 and the hydrogen atoms of H2SO4 for all cases except X = OH. Enthalpies and Gibbs free energies of deprotonation in the gas phase (Delta H-acid, Delta G(acid)) were calculated for (BX3)H2SO4 and (BX3)(2)H2SO4 complexes. These data revealed that clustering of BX3 with H2SO4 enhances the acidity of H2SO4 by about 9-58 kcal mol(-1). The (B(CN)(3))(2)H2SO4 cluster had Delta H-acid and Delta G(acid) values of 255.0 and 246.7 kcal mol(-1), respectively, and is the strongest Bronsted acids among the (BX3)(2)H2SO4 clusters.Peer reviewe

    Clustering of HClO4 with Bronsted (H2SO4, HClO4, HNO3) and Lewis acids BX3 (X = H, F, Cl, Br, OH) : a DFT study

    Get PDF
    HClO4 is an important catalyst in organic chemistry, and also acts as a reservoir or sink species in atmospheric chlorine chemistry. In this study, we computationally investigate the interactions of Bronsted (H2SO4, HClO4, HNO3) and Lewis acids (BH3, BF3, BCl3, BBr3, B(OH)(3)) with HClO4 using the omega B97xD method and the aug-cc-pVDZ basis set. Different isomers of clusters with up to 4 molecules (tetramer) were optimized, and the most stable structures were determined. The enthalpies, Delta H, and Gibbs free energies, Delta G, of cluster formation were calculated in the gas phase at 298 K. Atoms in molecules (AIM) calculations find B-O bond critical points only in the (BH3)(n)HClO4 clusters, while formation of other clusters was based on hydrogen bonding interactions. (H2SO4)HClO4 and (B(OH)(3))HClO4, with formation enthalpies of -14.1 and -12.0 kcal mol(-1), were the most stable, and (BCl3)HClO4 with a formation enthalpy of -2.9 kcal mol(-1), was the least stable cluster among the dimers. Clustering of the Lewis and Bronsted acids with HClO4 enhanced its acidity, so that clustering of four HClO4 molecules and formation of (HClO4)(4) increases the acidity of HClO4 by about 35 kcal mol(-1). The most acidic dimer cluster found in the study was (BBr3)HClO4, with Delta H-acid of 275 kcal mol(-1); 26 kcal mol(-1) stronger than that of the HClO4 monomer.Peer reviewe

    Is either direct photolysis or photocatalysed H-shift of peroxyl radicals a competitive pathway in the troposphere?

    Get PDF
    Peroxyl radicals (ROO.) are key intermediates in atmospheric chemistry, with relatively long lifetimes compared to most other radical species. In this study, we use multireference quantum chemical methods to investigate whether photolysis can compete with well-established ROO. sink reactions. We assume that the photolysis channel is always ROO. + h nu => RO + O(P-3). Our results show that the maximal value of the cross-section for this channel is sigma = 1.3 x 10(-18) cm(2) at 240 nm for five atmospherically representative peroxyl radicals: CH3OO., C(O)HCH2OO., CH3CH2OO., HC(O)OO. and CH3C(O)OO.. These values agree with experiments to within a factor of 2. The rate constant of photolysis in the troposphere is around 10(-5) s(-1) for all five ROO.. As the lifetime of peroxyl radicals in the troposphere is typically less than 100 s, photolysis is thus not a competitive process. Furthermore, we investigate whether or not electronic excitation to the first excited state (D-1) by infrared radiation can facilitate various H-shift reactions, leading, for example, in the case of CH3OO. to formation of O.H and CH2O or HOO. and CH2 products. While the activation barriers for H-shifts in the D-1 state may be lower than in the ground state (D-0), we find that H-shifts are unlikely to be competitive with decay back to the D-0 state through internal conversion, as this has a rate of the order of 10(13) s(-1) for all studied systems.Peer reviewe

    Phosphoric acid - a potentially elusive participant in atmospheric new particle formation

    Get PDF
    We investigate the molecular interactions between phosphoric acid and common atmospheric nucleation precursors using computational methods. The equilibrium geometries and vibrational frequencies are obtained using the three DFT functionals M06-2X, PW91 and B97X-D. The single-point energy is corrected using a high-level CCSD(T)-F12a/VDZ-F12 calculation. The molecular interaction between phosphoric acid and sulphuric acid is found to be strong with reaction free energy of similar magnitude as the interaction between dimethylamine and sulphuric acid. The strong hydrogen bonding of phosphoric acid to sulphuric acid indicates that concentrations of as low as 10(2)-10(4) molecules/cm(3) will offer equivalent or higher stability as the sulphuric acid dimer for the formation of atmospheric molecular clusters. We assess and utilise the DLPNO-CCSD(T) method for studying larger clusters involving phosphoric acid and sulphuric acid and find that having a phosphoric acid molecule present in the cluster enhances the further addition of sulphuric acid molecules. [GRAPHICS] .Peer reviewe

    Impact of Quantum Chemistry Parameter Choices and Cluster Distribution Model Settings on Modeled Atmospheric Particle Formation Rates

    Get PDF
    We tested the influence of various parameters on the new particle formation rate predicted for the sulfuric acid–ammonia system using quantum chemistry and cluster distribution dynamics simulations, in our case, Atmospheric Cluster Dynamics Code (ACDC). We found that consistent consideration of the rotational symmetry number of monomers (sulfuric acid and ammonia molecules, and bisulfate and ammonium ions) leads to a significant rise in the predicted particle formation rate, whereas inclusion of the rotational symmetry number of the clusters only changes the results slightly, and only in conditions where charged clusters dominate the particle formation rate. This is because most of the clusters stable enough to participate in new particle formation have a rotational symmetry number of 1, and few exceptions to this rule are positively charged clusters. In contrast, the application of the quasi-harmonic correction for low-frequency vibrational modes tends to generally decrease predicted new particle formation rates and also significantly alters the slope of the formation rate curve plotted against the sulfuric acid concentration, which is a typical convention in atmospheric aerosol science. The impact of the maximum size of the clusters explicitly included in the simulations depends on the simulated conditions. The errors arising from a limited set of clusters are higher for higher evaporation rates, and thus tend to increase with temperature. Similarly, the errors tend to be higher for lower vapor concentrations. The boundary conditions for outgrowing clusters (that are counted as formed particles) have only a small influence on the results, provided that the definition is chemically reasonable and that the set of simulated clusters is sufficiently large. A comparison with data from the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber and a cluster distribution dynamics model using older quantum chemistry input data shows improved agreement when using our new input data and the proposed combination of symmetry and quasi-harmonic corrections.Peer reviewe

    Diamines Can Initiate New Particle Formation in the Atmosphere

    Get PDF
    Recent experimental evidence suggests that diamines can enhance atmospheric new particle formation more efficiently compared to monoamines such as dimethylamine Here we investigate the molecular interactions between sulfuric acid (sa) and the diamine putrescine (put) using computational methods. The molecular structure of up to four sulfuric acid molecules and up to four putrescine molecules were obtained, at the omega B97X-D/6-31++G(d,p) level of theory. We utilized a domain local pair natural orbital coupled cluster method (DLPNO-CCSD(T)/aug-cc-pVTZ) to obtain highly accurate binding energies of the clusters. We find that the (sa)(1-4)(put)(1-4) clusters show more ionic character than clusters consisting of sulfuric acid and dimethylamine (dma) by readily forming several sulfate ions in the cluster. To estimate the stability of the clusters, we calculate the evaporation rates and compare them to ESI-APi-TOF measurements. Using the atmospheric cluster dynamics code (ACDC), we simulate and compare the new particle formation rates between the (sa)(1-4)(put)(1-4) and (sa),(1-4)(dma)(1-4) cluster systems. We find that putrescine significantly enhances the formation of new particles compared to dimethylamine. Our findings suggest that a large range of amines with different basicity is capable of explaining various regions of the observed new particle formation events. These results indicate that diamines, or related compounds with high basicity, might be important species in forming the initial cluster with sulfuric acid and subsequently more abundant amines with lower basicity can assist in the new particle formation process by attaching to the sulfuric acid-diamine nucleus.Peer reviewe

    Reaction Mechanisms Underlying Unfunctionalized Alkyl Nitrate Hydrolysis in Aqueous Aerosols

    Get PDF
    Alkyl nitrates (ANs) are both sinks and sources of nitrogen oxide radicals (NOx = NO + NO2) in the atmosphere. Their reactions affect both the nitrogen cycle and ozone formation and therefore air quality and climate. ANs can be emitted to the atmosphere or produced in the gas phase. In either case, they can partition into aqueous aerosols, where they might undergo hydrolysis, producing highly soluble nitrate products, and act as a permanent sink for NOx. The kinetics of AN hydrolysis partly determines the extent of AN contribution to the nitrogen cycle. However, kinetics of many ANs in various aerosols is unknown, and there are conflicting arguments about the effect of acidity and basicity on the hydrolysis process. Using computational methods, this study proposes a mechanism for the reactions of methyl, ethyl, propyl, and butyl nitrates with OH- (hydroxyl ion; basic hydrolysis), water (neutral hydrolysis), and H3O+ (hydronium ion; acidic hydrolysis). Using quantum chemical data and transition state theory, we follow the effect of pH on the contribution of the basic, neutral, and acidic hydrolysis channels, and the rate coefficients of AN hydrolysis over a wide range of pH. Our results show that basic hydrolysis (i.e., AN reaction with OH-) is the most kinetically and thermodynamically favorable reaction among our evaluated reaction schemes. Furthermore, comparison of our kinetics results with experimental data suggests that there is an as yet unknown acidic mechanism responsible for acidic catalysis of AN hydrolysis.Peer reviewe

    Solubility and Activity Coefficients of Atmospheric Surfactants in Aqueous Solution Evaluated Using COSMOtherm

    Get PDF
    Fatty acids (CH3(CH2)(n-2)COOH) and their salts are an important class of atmospheric surfactants. Here, we use COSMOtherm to predict solubility and activity coefficients for C-2-C-12 fatty acids with even number of carbon atoms and their sodium salts in binary water solutions and also in ternary water-inorganic salt solutions. COSMOtherm is a continuum solvent model implementation which can calculate properties of complex systems using quantum chemistry and thermodynamics. Calculated solubility values of the organic acids in pure water are in good agreement with reported experimental values. The comparison of the COSMOtherm-derived Setschenow constants for ternary solutions comprising NaCl with the corresponding experimental values from the literature shows that COSMOtherm overpredicts the salting out effect in all cases except for the solutions of acetic acid. The calculated activity and mean activity coefficients of fatty acids and fatty acid sodium salts, respectively, show deviation of the systems from ideal solution. The computed mean activity coefficients of the fatty acid salts in binary systems are in better agreement with experimentally derived values for the organic salts with longer aliphatic chain (C-8-C-10). The deviation of the solutions from ideality could lead to biased estimations of cloud condensation nuclei number concentrations if not considered in Kohler calculations and cloud microphysics.Peer reviewe

    Computational Investigation of the Formation of Peroxide (ROOR) Accretion Products in the OH- and NO3-Initiated Oxidation of alpha-Pinene

    Get PDF
    The formation of accretion products ("dimers") from recombination reactions of peroxyl radicals (RO2) is a key 5 3 step in the gas-phase generation of low-volatility vapors, leading to atmospheric aerosol particles. We have recently demonstrated that S 1 this recombination reaction very likely proceeds via an intermediate complex of two alkoxy radicals (RO center dot center dot center dot OR') and that the accretion product pathway involves an intersystem crossing (ISC) of this complex from the triplet to the singlet surface. However, ISC rates have hitherto not been computed for large and chemically complex RO center dot center dot center dot OR' systems actually relevant to atmospheric aerosol formation. Here, we carry out systematic conformational sampling and ISC rate calculations on (3)(RO center dot center dot center dot OR') clusters formed in the recombination reactions of different diastereomers of the first-generation peroxyl radicals originating in both OH- and NO3 -initiated reactions of alpha-pinene, a key biogenic hydrocarbon for atmospheric aerosol formation. While we find large differences between the ISC rates of different diastereomer pairs, all systems have ISC rates of at least 10(6) s(-1), and many have rates exceeding 10(10) s(-1). Especially the latter value demonstrates that accretion product formation via the suggested pathway is a competitive process also for alpha-pinene-derived RO2 and likely explains the experimentally observed gas-phase formation of C-20 compounds in alpha-pinene oxidation.Peer reviewe
    • …
    corecore