55 research outputs found

    A-CHAIM: Near-Real-Time Data Assimilation of the High Latitude Ionosphere With a Particle Filter

    Get PDF
    The Assimilative Canadian High Arctic Ionospheric Model (A-CHAIM) is an operational ionospheric data assimilation model that provides a 3D representation of the high latitude ionosphere in Near-Real-Time (NRT). A-CHAIM uses low-latency observations of slant Total Electron Content (sTEC) from ground-based Global Navigation Satellite System (GNSS) receivers, ionosondes, and vertical TEC from the JASON-3 altimeter satellite to produce an updated electron density model above 45° geomagnetic latitude. A-CHAIM is the first operational use of a particle filter data assimilation for space environment modeling, to account for the nonlinear nature of sTEC observations. The large number (>104 ) of simultaneous observations creates significant problems with particle weight degeneracy, which is addressed by combining measurements to form new composite observables. The performance of A-CHAIM is assessed by comparing the model outputs to unassimilated ionosonde observations, as well as to in-situ electron density observations from the SWARM and DMSP satellites. During moderately disturbed conditions from 21 September 2021 through 29 September 2021, A-CHAIM demonstrates a 40%–50% reduction in error relative to the background model in the F2-layer critical frequency (foF2) at midlatitude and auroral reference stations, and little change at higher latitudes. The height of the F2-layer (hmF2) shows a small 5%–15% improvement at all latitudes. In the topside, A-CHAIM demonstrates a 15%–20% reduction in error for the Swarm satellites, and a 23%–28% reduction in error for the DMSP satellites. The reduction in error is distributed evenly over the assimilation region, including in data-sparse regions

    GNSS Differential Code Bias Determination Using Rao‐Blackwellized Particle Filtering

    Get PDF
    The Assimilative Canadian High Arctic Ionospheric Model (A-CHAIM) is a near-real-time data assimilation model of the high latitude ionosphere, incorporating measurements from many instruments, including slant Total Electron Content measurements from ground-based Global Navigation Satellite System (GNSS) receivers. These measurements have receiver-specific Differential Code Biases (DCB) which must be resolved to produce an absolute measurement, which are resolved simultaneously with the ionospheric state using Rao-Blackwellized particle filtering. These DCBs are compared to published values and to DCBs determined using eight different Global Ionospheric Maps (GIM), which show small but consistent systematic differences. The potential cause of these systematic biases is investigated using multiple experimental A-CHAIM test runs, including the effect of plasmaspheric electron content. By running tests using the GIM-derived DCBs, it is shown that using A-CHAIM DCBs produces the lowest overall error, and that using GIM DCBs causes an overestimation of the topside electron density which can exceed 100% when compared to in situ measurements from DMSP

    On the Creation, Depletion, and End of Life of Polar Cap Patches

    Get PDF
    Ionospheric convection patterns from the Super Dual Auroral Radar Network are used to determine the trajectories, transit times, and decay rates of three polar cap patches from their creation in the dayside polar cap ionosphere to their end of life on the nightside. The first two polar cap patches were created within 12 min of each other and traveled through the dayside convection throat, before entering the nightside auroral oval after 104 and 92 min, respectively. When the patches approached the nightside auroral oval, an intensification in the poleward auroral boundary occurred close to their exit point, followed by a decrease in the transit velocity. The last patch (patch 3) decayed completely within the polar cap and had a lifetime of only 78 min. After a change in drift direction, patch 3 had a radar backscatter power half‐life of 4.23 min, which reduced to 1.80 min after a stagnation, indicating a variable decay rate. 28 minutes after the change in direction, and 16 min after coming to a halt within the Clyde River radar field‐of‐view, patch 3 appeared to reach its end of life. We relate this rapid decay to increased frictional heating, which speeds up the recombination rate. Therefore, we suggest that the slowed patch motion within the polar cap convection pattern is a major factor in determining whether the patch survives as a recognizable density enhancement by the time the flux tubes comprising the initial patch cross into the nightside auroral oval

    Heliophysics and Amateur Radio:Citizen Science Collaborations for Atmospheric, Ionospheric, and Space Physics Research and Operations

    Get PDF
    The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities

    The empirical Canadian high arctic ionospheric model (E-CHAIM): Bottomside

    No full text

    The empirical Canadian high arctic ionospheric model (E-CHAIM): Bottomside

    No full text
    • 

    corecore