21 research outputs found

    Aberrant Activation of p38 MAP Kinase-Dependent Innate Immune Responses Is Toxic to Caenorhabditis elegans

    Get PDF
    Inappropriate activation of innate immune responses in intestinal epithelial cells underlies the pathophysiology of inflammatory disorders of the intestine. Here we examine the physiological effects of immune hyperactivation in the intestine of the nematode Caenorhabditis elegans. We previously identified an immunostimulatory xenobiotic that protects C. elegans from bacterial infection by inducing immune effector expression via the conserved p38 MAP kinase pathway, but was toxic to nematodes developing in the absence of pathogen. To investigate a possible connection between the toxicity and immunostimulatory properties of this xenobiotic, we conducted a forward genetic screen for C. elegans mutants that are resistant to the deleterious effects of the compound, and identified five toxicity suppressors. These strains contained hypomorphic mutations in each of the known components of the p38 MAP kinase cassette (tir-1, nsy-1, sek-1, and pmk-1), demonstrating that hyperstimulation of the p38 MAPK pathway is toxic to animals. To explore mechanisms of immune pathway regulation in C. elegans, we conducted another genetic screen for dominant activators of the p38 MAPK pathway, and identified a single allele that had a gain-of-function (gf) mutation in nsy-1, the MAP kinase kinase kinase that acts upstream of p38 MAPK pmk-1. The nsy-1(gf) allele caused hyperinduction of p38 MAPK PMK-1-dependent immune effectors, had greater levels of phosphorylated p38 MAPK, and was more resistant to killing by the bacterial pathogen Pseudomonas aeruginosa compared to wild-type controls. In addition, the nsy-1(gf) mutation was toxic to developing animals. Together, these data suggest that the activity of the MAPKKK NSY-1 is tightly regulated as part of a physiological mechanism to control p38 MAPK-mediated innate immune hyperactivation, and ensure cellular homeostasis in C. elegans

    A set of diagnostic tests for detection of active Babesia duncani infection

    Get PDF
    OBJECTIVES : Human babesiosis is an emerging and potentially fatal tick-borne disease caused by intraerythrocytic parasites of the Babesia genus. Among these, Babesia duncani is particularly notable for causing severe and life-threatening illness in humans. Accurate diagnosis and effective disease management hinge on the detection of active B. duncani infections. While molecular assays are available to detect the parasite in blood, a reliable method for identifying biomarkers of active infection remains elusive. METHODS : We developed the first B. duncani antigen capture assays, targeting two immunodominant antigens, BdV234 and BdV38. These assays were validated using established in vitro and in vivo B. duncani infection models, and following drug treatment. RESULTS : The assays demonstrated no cross-reactivity with other species such as B. microti, B. divergens, Babesia MO1, or Plasmodium falciparum , and can detect as few as 115 infected erythrocytes/µl of blood. Screening of 1731 blood samples from various biorepositories, including samples previously identified as Lyme and/or B. microti -positive, as well as new specimens from wild mice, revealed no evidence of B. duncani infection or cross-reactivity. CONCLUSIONS : These assays hold significant promise for various applications, including point-of-care testing for the early detection of B. duncani in patients, field tests for screening reservoir hosts, and high-throughput screening of blood samples intended for transfusion.The Global Lyme Alliance Foundation; National Institute of Health grants; the Steven and Alexandra Cohen Foundation and The Blavatnik Family Foundation.http://www.elsevier.com/locate/ijidhj2024Veterinary Tropical DiseasesSDG-03:Good heatlh and well-bein

    Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line

    No full text
    Introduction. Breast cancer has been represented a challenging issue worldwide as it is one of the major leading causes of death among women. CD81 gene, a member of the tetraspanin protein family, has been associated with the development of human cancers. Genome editing technologies, particularly the CRISPR-Cas9 system, have shown rapid progress in gene function studies. In this study, we aimed to evaluate the ability of the CRISPR-Cas9 plasmid-based system to modify specific regions of the CD81 gene in the MDA-MB-231 breast cancer cell line. Materials and methods. Using bioinformatics database search, four different single guide RNAs (sgRNAs) totarget exon 3 and exon 5 of the CD81 gene were designed. The intended sgRNAs sequences were cloned into the expression plasmid pSpCas9(BB)-2A-GFP (PX458) bearing sgRNA scaffold backbone, Cas9, and EGFP coding sequences, which was confirmed by colony PCR and sequencing. Transfection efficiency was determined by fluorescence microscopy and flow cytometry analysis. Gene editing efficiency was measured qualitatively and quantitatively using the T7E1 and TIDE software, respectively. Results. Our data show that expression constructs were successfully introduced into MDA-MB-231 cells with an acceptable transfection efficiency. Two sgRNAs that were afforded to introduce significant mutations in their target regions were detected by TIDE software (p-value < 0.05). To the best of our knowledge, CD81 gene editing in these cells has been investigated for the first time in this study using the CRISPR/Cas9 technique. Conclusions. Taken together, our data show that the CRISPR-Cas9 system can change the genomic sequence in the target area of MDA-MB-231 cells. Along with previous studies, we propose forethought when using T7E1-based quantitative indel estimates, as comparing activities of multiple gRNAs with the T7E1 assay may lead to inaccurate conclusions. Instead, estimating non-homologous end-joining events (NHEJ) by Sanger sequencing and subsequent TIDE analysis is recommended

    A Whole Genome Sequencing-Based Approach to Track down Genomic Variants in Itraconazole-Resistant Species of <i>Aspergillus</i> from Iran

    No full text
    The antifungal resistance in non-fumigatus Aspergillus spp., as well as Aspergillus fumigatus, poses a major therapeutic challenge which affects the entire healthcare community. Mutation occurrence of cyp51 gene paralogs is the major cause of azole resistance in Aspergillus spp. To obtain a full map of genomic changes, an accurate scan of the entire length of the Aspergillus genome is necessary. In this study, using whole genome sequencing (WGS) technique, we evaluated the mutation in cyp51A, cyp51B, Cdr1B, AtrR, Hmg1, HapE and FfmA genes in different clinical isolates of Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Aspergillus welwitschiae and Aspergillus terreus which responded to minimum inhibitory concentrations of itraconazole above 16 µg mL−1. We found different nonsynonymous mutations in the cyp51A, cyp51B, Cdr1B, AtrR, Hmg1, HapE and FfmA gene loci. According to our findings, Aspergillus species isolated from different parts of the world may represent different pattern of resistance mechanisms which may be revealed by WGS

    A knockdown of the herpes simplex virus type-1 gene in all-in-one CRISPR vectors

    No full text
    Introduction. Herpes simplex virus type 1 (HSV-1) is a virus that causes serious human disease and establishes a long-term latent infection. The latent form of this virus has shown to be resistant to antiviral drugs. Clustered Regularly Interspace Short Palindromic Repeats (CRISPR), is an important tool in genome engineering and composed of guide RNA (gRNA) and Cas9 nuclease that makes an RNA-protein complex to digest exclusive target sequences implementation of gRNA. Moreover, CRISPR-Cas9 system effectively suppresses HSV-1 infection by knockout of some viral genes. Materials and methods. To survey the efficacy of Cas9 system on HSV-1 genome destruction, we designed several guide RNAs (gRNAs) that all packaged in one vector. Additionally, we performed a one-step restriction using BamHI and Esp3I enzymes. Results. CRISPR/Cas9 system targeted against the gD gene of HSV-1 was transfected into HEK-AD cells that showed a significant reduction of HSV-1 infection by plaque assay and real-time PCR. Conclusion. The pCas-Guide-EF1a-GFP CRISPR vector can create a fast and efficient method for gRNA cloning by restriction enzymes (Esp3I (BsmBI) and BamHI). Therefore, the CRISPR/Cas9 system may be utilized for the screening of genes critical for the HSV-1 infection and developing new strategies for targeted therapy of viral infections caused by HSV-1
    corecore