1,222 research outputs found

    On Heterotic Orbifolds, M Theory and Type I' Brane Engineering

    Get PDF
    Horava--Witten M theory -- heterotic string duality poses special problems for the twisted sectors of heterotic orbifolds. In [1] we explained how in M theory the twisted states couple to gauge fields apparently living on M9 branes at both ends of the eleventh dimension at the same time. The resolution involves 7D gauge fields which live on fixed planes of the (T^4/Z_N) x (S^1/Z_2) x R^{5,1} orbifold and lock onto the 10D gauge fields along the intersection planes. The physics of such intersection planes does not follow directly from the M theory but there are stringent kinematic constraints due to duality and local consistency, which allowed us to deduce the local fields and the boundary conditions at each intersection. In this paper we explain various phenomena at the intersection planes in terms of duality between HW and type I' superstring theories. The orbifold fixed planes are dual to stacks of D6 branes, the M9 planes are dual to O8 orientifold planes accompanied by D8 branes, and the intersections are dual to brane junctions. We engineer several junction types which lead to distinct patterns of 7D/10D gauge field locking, 7D symmetry breaking and/or local 6D fields. Another aspect of brane engineering is putting the junctions together; sometimes, the combined effect is rather spectacular from the HW point of view and the quantum numbers of some twisted states have to `bounce' off both ends of the eleventh dimension before their heterotic identity becomes clear. Some models involve D6/O8 junctions where the string coupling diverges towards the orientifold plane. We use the heterotic-HW-I' duality to predict what should happen at such junctions.Comment: 118 pages, uses phyzzx, color printer advice

    Pilot sequence based IQ imbalance estimation and compensation

    Get PDF
    Abstract. As modern radio access technologies strive to achieve progressively higher data rates and to become increasingly more reliable, minimizing the effects of hardware imperfections becomes a priority. One of those imperfections is in-phase quadrature imbalance (IQI), caused by amplitude and phase response differences between the I and Q branches of the IQ demodulation process. IQI has been shown to deteriorate bit error rates, possibly compromise positioning performance, amongst other effects. Minimizing IQI by tightening hardware manufacturing constraints is not always a commercially viable approach, thus, baseband processing for IQI compensation provides an alternative. The thesis begins by presenting a study in IQI modeling for direct conversion receivers, we then derive a model for general imbalances and show that it reproduces the two most common models in the bibliography. We proceed by exploring some of the existing IQI compensation techniques and discussing their underlying assumptions, advantages, and possible relevant issues. A novel pilot-sequence based approach for tackling IQI estimation and compensation is introduced in this thesis. The idea is to minimize the square Frobenius norm of the error between candidate covariance matrices, which are functions of the candidate IQI parameters, and the sample covariance matrices, obtained from measurements. This new method is first presented in a positioning context with flat fading channels, where IQI compensation is used to improve the positioning estimates mean square error. The technique is then adapted to orthogonal frequency division multiplexing (OFDM) systems,including an version that exploits the 5G New Radio reference signals to estimate the IQI coefficients. We further generalize the new approach to solve joint transmitter and receiver IQI estimation and discuss the implementation details and suggested optimization techniques. The introduced methods are evaluated numerically in their corresponding chapters under a set of different conditions, such as varying signal-to-noise ratio, pilot sequence length, channel model, number of subcarriers, etc. Finally, the proposed compensation approach is compared to other well-established methods by evaluating the bit error rate curves of 5G transmissions. We consistently show that the proposed method is capable of outperforming these other methods if the SNR and pilot sequence length values are sufficiently high. In the positioning simulations, the proposed IQI compensation method was able to improve the root mean squared error (RMSE) of the position estimates by approximately 25 cm. In the OFDM scenario, with high SNR and a long pilot sequence, the new method produced estimates with mean squared error (MSE) about a million times smaller than those from a blind estimator. In bit error rate (BER) simulations, the new method was the only compensation technique capable of producing BER curves similar to the curves without IQI in all of the studied scenarios

    Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico

    Full text link
    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral non-covalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physico-chemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9+/-0.4 kcal/mol) and longitudinal (14.9+/-1.5 kcal/mol) tubulin-tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000-26,000 pN*nm^2), support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblie

    A comparison of the relationship between depression, perceived disability, and physical performance in persons with chronic pain

    Full text link
    This study examined the relationships between self‐report of depressive symptoms, perceived disability, and physical performance among 267 persons with chronic pain. Prior research has reported a relationship between depression and disability using self‐report measures. However, self‐report instruments may be prone to biases associated with depression as depressed persons with pain may have an exaggerated negative view of their level of function. In addition, we examined whether the relationship between depression and functional activity was mediated by physiologic effort (as measured by heart rate). The results indicated that self‐report of depressive symptoms (using the Center for Epidemiological Studies‐Depression Scale (CES‐D)) was significantly correlated with self‐report of disability on the Quebec Back Pain Disability Scale (QBPDS) and physical performance on the Progressive Isoinertial Lifting Evaluation (PILE). Regression analyses revealed that depression assessed by the CES‐D significantly contributed to the prediction of QBPDS scores and PILE performance even when controlling for age, gender, site of pain, and pain intensity. The magnitude of the relationships between depression and self‐report and functional activity were similar, suggesting that a self‐report bias associated with depression is not responsible for an observed relationship between depression and disability. Physiologic effort partially mediated the relationship between depression and physical performance. The findings further highlight the importance of depression in the experience of chronic pain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90095/1/j.ejpain.2007.11.003.pd

    Universal Features of Holographic Anomalies

    Full text link
    We study the mechanism by which gravitational actions reproduce the trace anomalies of the holographically related conformal field theories. Two universal features emerge: a) the ratios of type B trace anomalies in any even dimension are independent of the gravitational action, being uniquely determined by the underlying algebraic structure b) the normalization of the type A and the overall normalization of the type B anomalies are given by action dependent expressions with the dimension dependence completely fixed.Comment: 17 pages, harvma

    P160 Occurrence and patterns of meniscus damage following ACL transection

    Get PDF

    Characterization of the TruSense S310 Laser Range System for Contact-less Measurement of Liquid Levels in Large-Volume Neutrino Detectors

    Full text link
    Neutrino experiments often use large volumes of water, organic scintillators or noble liquids as active detection material. Due to the large hydrostatic and buoyancy forces involved, precise knowledge of the liquid levels inside the detector tank are mandatory. Here we present the main characteristics of the TruSense S310 Laser Range System. Level measurements can be performed without direct contact to the liquid and through a gas-proof acrylic window, thus preserving the strict radiopurity and chemical requirements of the target liquid. We report the results of a suit of laboratory experiments for short-term precision tests (±\pm5\,mm) and long-term stability studies. Moreover, we demonstrate that the infrared laser can be used while standard bi-alkali PMTs are operational. We discuss the mechanical layout and integration of the system in the OSIRIS pre-detector that will monitor the radiopurity of the liquid scintillator for the large-volume neutrino experiment JUNO

    Remarks on Resonant Scalars in the AdS/CFT Correspondence

    Get PDF
    The special properties of scalars having a mass such that the two possible dimensions of the dual scalar respect the unitarity and the Breitenlohner-Freedman bounds and their ratio is integral (``resonant scalars'') are studied in the AdS/CFT correspondence. The role of logarithmic branches in the gravity theory is related to the existence of a trace anomaly and to a marginal deformation in the Conformal Field Theory. The existence of asymptotic charges for the conformal group in the gravity theory is interpreted in terms of the properties of the corresponding CFT.Comment: 16 pages, 1 figur
    • 

    corecore