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ABSTRACT

As modern radio access technologies strive to achieve progressively higher data rates and
to become increasingly more reliable, minimizing the effects of hardware imperfections
becomes a priority. One of those imperfections is in-phase quadrature imbalance (IQI),
caused by amplitude and phase response differences between the I and Q branches of
the IQ demodulation process. IQI has been shown to deteriorate bit error rates, possibly
compromise positioning performance, amongst other effects. Minimizing IQI by tightening
hardware manufacturing constraints is not always a commercially viable approach, thus,
baseband processing for IQI compensation provides an alternative.

The thesis begins by presenting a study in IQI modeling for direct conversion receivers,
we then derive a model for general imbalances and show that it reproduces the two most
common models in the bibliography. We proceed by exploring some of the existing IQI
compensation techniques and discussing their underlying assumptions, advantages, and
possible relevant issues.

A novel pilot-sequence based approach for tackling IQI estimation and compensation
is introduced in this thesis. The idea is to minimize the square Frobenius norm of the
error between candidate covariance matrices, which are functions of the candidate IQI
parameters, and the sample covariance matrices, obtained from measurements. This
new method is first presented in a positioning context with flat fading channels, where
IQI compensation is used to improve the positioning estimates mean square error. The
technique is then adapted to orthogonal frequency division multiplexing (OFDM) systems,
including an version that exploits the 5G New Radio reference signals to estimate the
IQI coefficients. We further generalize the new approach to solve joint transmitter and
receiver IQI estimation and discuss the implementation details and suggested optimization
techniques.

The introduced methods are evaluated numerically in their corresponding chapters
under a set of different conditions, such as varying signal-to-noise ratio, pilot sequence
length, channel model, number of subcarriers, etc. Finally, the proposed compensation
approach is compared to other well-established methods by evaluating the bit error rate
curves of 5G transmissions. We consistently show that the proposed method is capable
of outperforming these other methods if the SNR and pilot sequence length values are
sufficiently high. In the positioning simulations, the proposed IQI compensation method
was able to improve the root mean squared error (RMSE) of the position estimates by
approximately 25 cm. In the OFDM scenario, with high SNR and a long pilot sequence,
the new method produced estimates with mean squared error (MSE) about a million times
smaller than those from a blind estimator. In bit error rate (BER) simulations, the new
method was the only compensation technique capable of producing BER curves similar to
the curves without IQI in all of the studied scenarios.

Keywords: IQ Imbalance, Pilot Sequence, Positioning, OFDM.
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1 INTRODUCTION

With the higher need for intense miniaturization of antennas and subsequent radio frequency
(RF) chain elements, homodyne receivers (also called zero intermediate frequency (IF) or direct
conversion receivers) are becoming an increasingly more attractive option in radio transceiver
design. Their appeal comes from the smaller physical size and possibly cheaper costs achieved
by eliminating the expensive IF stage, requiring no image-rejection filters and only a single set
of mixers. These benefits, naturally, come at the cost of having to generate a local oscillator
(LO) signal at carrier frequency. This causes a range of implementation related issues [1]
such as direct current (DC) offset, i.e., an oscillator signal with non-zero mean, and in-phase
quadrature imbalance (IQI), i.e., the in-phase and quadrature branches of the in-phase quadrature
(IQ) demodulator experiencing different amplitude and imperfect quadrature. Compared to
lower frequency systems, millimeter wave (mmWave) and sub-terahertz systems are much more
vulnerable to hardware imperfections. Some problems include higher susceptibility to phase
noise and IQI, increasingly more complex compensation of power amplifier distortion, and high
data processing pressure [2]. These complications make mitigating the effects of hardware
non-idealities a necessity in order to achieve the best possible performance out of the available
resources.

The impacts of IQI are more noticeable in mmWave systems due to higher operating frequency
and larger bandwidth [2], and it has been shown that IQI can noticeably deteriorate position
and orientation error bounds [3]. Besides, IQI can severely limit the throughput of radio
links by making the use of higher order constellations not viable and generally increasing the
symbol error rate (SER). Severe IQI can create performance floors for the SER curves [4],
effectively placing a limit on the best achievable error rate unless the imbalance is properly
compensated. Increasing the manufacturing precision of the components to minimize hardware
related performance limiting issues is only feasible up to a certain point, beyond which the
production costs become too prohibitive to ensure commercial viability. An interesting solution
is the compensation of these impairments through signal processing techniques, implemented
either in application specific hardware or in software. This is the principal topic of this thesis.

The effects of IQI vary depending on the system architecture. For example, in heterodyne
receivers, IQI causes an image problem in which the frequency image interference partially
mixes onto the desired signal during IF downconversion [5]. In homodyne receivers, IQI
distorts the IQ branches of the wanted signal directly. This is caused by amplitude and phase
impairments of the LO paths as well as mismatch between the I and Q branches after analog
downconversion [6]. These mismatches occur due to a variety of practical reasons, such as
temperature dependencies, material differences, design issues, hardware component tolerances,
etc. In Chapter 2, we present a derivation of some of the possible mathematical models for IQI.
There we show that two of the more popular models, the ideal I branch model and the symmetric
imbalance model, are mathematically equivalent up to a complex scalar constant at the input. A
brief discussion of frequency dependent IQI is presented in its final section.

Many methods have been proposed to tackle the IQI problem. Most of them rely on at
least one of the following techniques: relaxing some constraints on the definition on the IQI
coefficients to solve a system of equations, assuming IQI is small or approximately non-existent,
applying the least mean squares (LMS) [7] algorithm for linear or widely linear minimum mean
square error (WL-MMSE) estimation of the received signal, using a minimum mean square
error (MMSE) estimator directly, or applying a blind estimator for the coefficients by assuming
an underlying distribution for the received signal. It is also very common that some methods
assume that some information which would be very hard to achieve in a practical situation is
known, such as knowing the true channel covariance and complementary covariance matrices,
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having perfect channel knowledge, or knowing some quantity which is hard to estimate directly
from the data with usual methods.

Some approaches are only concerned with compensating for the IQI and not necessarily
estimating its coefficients. These are certainly valid and effective at what they were designed to
achieve, but lack the advantage of being able to distinguish the distortion caused by IQI from
channel effects. Isolating the effects of IQI is important, for example, in a positioning context
where the angle of arrival measurements rely on knowing the received waveform precisely
instead of only estimating the received symbols. To contextualize the remainder of the thesis,
Chapter 3 displays a survey of some of the IQI estimation or compensation procedures available
in the literature. They are classified as either blind estimators, MMSE equalizers, or as another
kind of estimator. The original expressions from the references are presented in order to give
the reader an idea of the overall concept of the procedures, but no detailed explanation is given
due to scope restrictions. Each different method is presented along with a short discussion on
their possible advantages, disadvantages, and limitations.

Accurate position estimation and location awareness is becoming increasingly more impor-
tant with the advent of fifth generation (5G) mmWave and the development of the future sixth
generation (6G) standard. In 5G new radio (5G NR), the positioning performance requirements
are defined for its massive commercial applications such as intelligent transportation, entertain-
ment, industry automation, robotics, remote operation, healthcare, smart parking, etc. [8] [9].
Fueled by key enablers such as the use of mmWave bands which allow for wide bandwidths,
dense antenna arrays, precise beamforming, as well as ultra dense networks (UDNs) with smart
antenna equipped access nodes, positioning in 5G is not only used to aid in the data transfer
process, but also as an use case in itself, such as intelligent traffic systems (ITSs) in the vehicle
location-based communication context [10]. With this in mind, in Chapter 4, we introduce a
novel, timing robust, pilot sequence based receiver IQI compensation procedure for positioning
applications in a flat fading scenario. A detailed derivation of the method and its assumptions
are presented, followed by an analysis section. The final section of the chapter presents nu-
merical results, assessing the position estimate mean square error (MSE) as a function of the
IQI parameter values, as well as the signal-to-noise ratio (SNR) and pilot sequence length. The
method is compared to a blind estimator as a performance reference.

Chapter 5 extends the concepts of the IQI estimation method in the previous chapter to an
orthogonal frequency division multiplexing (OFDM) receiver IQI scenario. A detailed analysis
of the convergence properties of the method is conducted, and an in-depth discussion of the
application details is presented. The derived technique is then readily extended to exploit the
fifth generation new radio (5G NR) reference signals in a 5G compliant IQI compensation
method. The chapter is concluded with a numerical results section evaluating the IQI estimation
performance as a function of the SNR, number of training slots, and number of subcarriers.
The new method is again compared to a blind estimator and 5G physical uplink shared channel
(PUSCH) throughput simulations are included.

Chapter 6 further generalizes the proposed OFDM IQI estimation method to tackle the
transmitter and receiver IQI case. This is a valuable result, because joint transmitter and
receiver IQI compensation is a relatively little explored topic if compared to receiver IQI only.
Besides, our method does not rely on knowing the signals at adjacent carriers at all, which is
a requirement of some of the techniques in the bibliography. Furthermore, the data from many
transmissions can be combined to further improve the quality of the estimates. After introducing
the operating principle of the method, a short discussion regarding the implementation details
is included, focusing on computational complexity and optimization issues. Like the other
chapters, this chapter is concluded with a numerical results section, displaying and discussing
the effects of the pilot sequence length, SNR, and number of subcarriers in the MSE of the IQI
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parameter estimates.
To provide a reference for evaluating the performance of the proposed IQI compensation

procedure, Chapter 7 compares our method to different IQI compensation techniques, verifying
the effectiveness of the IQI compensation by analysing the bit error rate (BER) curves. The
OFDM IQI compensation procedure from Chapter 5 is compared to a blind estimator and a
widely linear least mean squares (WL-LMS) frequency domain equalizer (FDE) adaptive filter.
The impacts of the training sequence length and SNR on the resulting BER curves are explored
and conclusions are drawn from the presented figures.

This thesis aims to introduce a novel IQ imbalance compensation method with potential to
outperform other existing techniques while still being relatively easy to apply. In doing so, we
intend to provide a step towards a definitive solution for the aforementioned issue. We expect the
high quality IQI estimation and compensation methods proposed in this thesis to further enable
increased data rates and reliability for the 5G standard and other radio access technologies.
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2 IQ IMBALANCE MODELING

IQI is the resulting effect of a wide range of hardware imperfections in wireless receivers
and transmitters. Modeling these properties directly is not feasible or convenient in a signal
processing perspective. Thus, a collection of simpler IQI models exist to model this effect at
a higher level perspective. These models vary mainly in two aspects: how the mismatch is
distributed between the I and Q branches, and whether any component dependence on signal
frequency is taken into account. Let us first focus on IQI modeling for radio transmitters and
direct conversion receivers by first giving an overview of the IQ modulation and demodulation
process. After this overview, the imbalance modeling approaches will be introduced and
discussed.

2.1 Ideal IQ modulation and demodulation

We will first analyse the ideal IQ case. Let 𝑥𝐼 (𝑡) and 𝑥𝑄 (𝑡) be two real valued signals that we
wish to transmit through IQ modulation. In the modulation scheme, these signals are assigned
to the I and Q branches respectively and upconverted with the following operation

𝑥RF(𝑡) = 𝑥𝐼 (𝑡)𝑎𝐼 (𝑡) − 𝑥𝑄 (𝑡)𝑎𝑄 (𝑡) (2.1)
= 𝑥𝐼 (𝑡) cos(𝜔0𝑡) − 𝑥𝑄 (𝑡) sin(𝜔0𝑡), (2.2)

where 𝑎𝐼 (𝑡) = cos(𝜔0𝑡) and 𝑎𝑄 (𝑡) = sin(𝜔0𝑡) are respectively the ideal I and Q branches of the
transmitter LO, and 𝜔0 is the carrier frequency. The expression in (2.1) is obviously real valued,
but 𝑥RF can be expressed in complex form by defining 𝑥𝐿 (𝑡) = 𝑥𝐼 (𝑡) + 𝑗𝑥𝑄 (𝑡), also called the
baseband (or lowpass) equivalent signal [11]

𝑥RF(𝑡) =
1
2

(
𝑥𝐿 (𝑡)𝑒 𝑗𝜔0𝑡 + 𝑥∗𝐿 (𝑡)𝑒− 𝑗𝜔0𝑡

)
= ℜ𝔢

{
𝑥𝐿 (𝑡)𝑒 𝑗𝜔0𝑡

}
. (2.3)

Then, 𝑥RF(𝑡) signal is amplified and transmitted. In a direct conversion wireless receiver, the
received signal 𝑦RF(𝑡) is amplified with a low noise amplifier (LNA), which we will assume is
ideally linear with unit gain (any amplifier gain could be absorbed by channel path-loss terms
anyway, so this gain assumption comes with no loss of generality), then it is IQ demodulated
directly from RF to baseband, and lowpass filtered to remove frequency components outside the
desired signal range

𝑦𝐼 (𝑡) = LPF {𝑦RF(𝑡)𝑏𝐼 (𝑡)} = LPF {𝑦RF(𝑡) cos(𝜔0𝑡)} = ℜ𝔢 {𝑦𝐿 (𝑡)} (2.4)
𝑦𝑄 (𝑡) = LPF

{
𝑦RF(𝑡)𝑏𝑄 (𝑡)

}
= LPF {−𝑦RF(𝑡) sin(𝜔0𝑡)} = ℑ𝔪 {𝑦𝐿 (𝑡)} , (2.5)

where 𝑏𝐼 (𝑡) = cos(𝜔0𝑡) and 𝑏𝑄 (𝑡) = − sin(𝜔0𝑡) are respectively the ideal I and Q branches
of the receiver LO, LPF denotes ideal lowpass filtering, and 𝑦𝐿 (𝑡) = 𝑦𝐼 (𝑡) + 𝑗 𝑦𝑄 (𝑡) is the
baseband equivalent of the received signal such that 𝑦RF = 2ℜ𝔢

{
𝑦𝐿 (𝑡)𝑒 𝑗𝜔0𝑡

}
. In the ideal

down-conversion, no residual images centered at −𝜔0 are present in the final signal. We will
see that this does not happen if the I and Q branches have any amplitude or phase mismatch.
To assist the reader in visualizing the modulation and demodulation structures in the common
receiver and transmitter topologies, Figures 2.1 and 2.2 present block diagrams of imbalanced
direct conversion and heterodyne receivers, respectively. Similarly, Figures 2.3 and 2.4 depict
imbalanced direct conversion and heterodyne transmitters.
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Figure 2.1. Block diagram representation of a direct conversion receiver affected by general IQI.

2.2 Imbalanced IQ modulation and demodulation

In this section, we will first analyse IQ imbalanced demodulation. We will show that any arbitrary
linear imbalance may be expressed as a symmetric imbalance across the I and Q branches or as
an ideal I branch with imbalanced Q branch. The complex equivalent signal of a receiver’s LO
under arbitrary imbalance may be written as [6]

𝑠𝑟𝐿𝑂 (𝑡) = 𝑔
𝑟
𝐼 cos(𝜔0𝑡 + 𝜙𝑟𝐼) − 𝑗𝑔𝑟𝑄 sin(𝜔0𝑡 + 𝜙𝑟𝑄) (2.6)

such that 𝑦𝐿 (𝑡) = 2LPF{𝑦RF(𝑡)𝑠𝑟𝐿𝑂 (𝑡)}. The I and Q components of the received signal are now[
𝑦′
𝐼
(𝑡)

𝑦′
𝑄
(𝑡)

]
=

[
𝑔𝑟
𝐼
cos(𝜙𝑟

𝐼
) 𝑔𝑟

𝐼
sin(𝜙𝑟

𝐼
)

−𝑔𝑟
𝑄

sin(𝜙𝑟
𝑄
) 𝑔𝑟

𝑄
cos(𝜙𝑟

𝑄
)

] [
𝑦𝐼
𝑦𝑄

]
. (2.7)

A vector with the real and imaginary parts of a complex number is related to a vector of the
complex number itself and its conjugate by the relations[

𝑥

𝑥∗

]
=

[
1 𝑗

1 − 𝑗

] [
ℜ𝔢 {𝑥}
ℑ𝔪 {𝑥}

]
←→ 1

2

[
ℜ𝔢 {𝑥}
ℑ𝔪 {𝑥}

]
=

[
1 1
− 𝑗 𝑗

] [
𝑥

𝑥∗

]
(2.8)

Thus, denoting by 𝑦′
𝐿
(𝑡) = 𝑦′

𝐼
(𝑡) + 𝑗 𝑦′

𝑄
(𝑡) the lowpass equivalent of the imbalanced received

signal we get[
𝑦′(𝑡)
𝑦′∗(𝑡)

]
=

[
1 𝑗

1 − 𝑗

] [
𝑦′
𝐼
(𝑡)

𝑦′
𝑄
(𝑡)

]
=

1
2

[
1 𝑗

1 − 𝑗

] [
𝑔𝑟
𝐼
cos(𝜙𝑟

𝐼
) 𝑔𝑟

𝐼
sin(𝜙𝑟

𝐼
)

−𝑔𝑟
𝑄

sin(𝜙𝑟
𝑄
) 𝑔𝑟

𝑄
cos(𝜙𝑟

𝑄
)

] [
1 1
− 𝑗 𝑗

] [
𝑦𝐿 (𝑡)
𝑦∗
𝐿
(𝑡)

]
(2.9)

=
1
2

[
𝑚11 𝑚12
𝑚21 𝑚22

] [
𝑦𝐿 (𝑡)
𝑦∗
𝐿
(𝑡)

]
, (2.10)
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Figure 2.2. Block diagram representation of a heterodyne receiver affected by general IQI,
where BPF denotes bandpass filtering.

where the elements of the imbalance matrix are

𝑚11 = 𝑔𝑟𝐼 (cos(𝜙𝑟𝐼) − 𝑗 sin(𝜙𝑟𝐼)) + 𝑔𝑟𝑄 (cos(𝜙𝑟𝑄) − 𝑗 sin(𝜙𝑟𝑄)) (2.11)
𝑚12 = 𝑔𝑟𝐼 (cos(𝜙𝑟𝐼) + 𝑗 sin(𝜙𝑟𝐼)) − 𝑔𝑟𝑄 (cos(𝜙𝑟𝑄) + 𝑗 sin(𝜙𝑟𝑄)) (2.12)
𝑚21 = 𝑔𝑟𝐼 (cos(𝜙𝑟𝐼) − 𝑗 sin(𝜙𝑟𝐼)) − 𝑔𝑟𝑄 (cos(𝜙𝑟𝑄) − 𝑗 sin(𝜙𝑟𝑄)) (2.13)
𝑚22 = 𝑔𝑟𝐼 (cos(𝜙𝑟𝐼) + 𝑗 sin(𝜙𝑟𝐼)) + 𝑔𝑟𝑄 (cos(𝜙𝑟𝑄) + 𝑗 sin(𝜙𝑟𝑄)). (2.14)

Taking only the 𝑦′(𝑡) term and applying Euler’s identity we get an expression for an arbitrary
IQ imbalance

𝑦′(𝑡) =
[
𝑔𝑟
𝐼
𝑒
− 𝑗 𝜙𝑟

𝐼 +𝑔𝑟
𝑄
𝑒
− 𝑗 𝜙𝑟

𝑄

2
𝑔𝑟
𝐼
𝑒
𝑗 𝜙𝑟

𝐼 −𝑔𝑟
𝑄
𝑒
𝑗 𝜙𝑟

𝑄

2

] [
𝑦𝐿 (𝑡)
𝑦∗
𝐿
(𝑡)

]
(2.15)

To demonstrate the relation between two common IQI models, let us show that any arbitrary
imbalance is mathematically equivalent to an ideal I branch with imbalanced Q branch or to a
symmetric imbalance across the I and Q branches. Say that the received signal is subjected to a
complex gain equal to 𝛾𝑎 = 1

𝑔𝑟
𝐼

𝑒 𝑗𝜙
𝑟
𝐼 , then

𝑦′𝑎 (𝑡) =
1 +

𝑔𝑟
𝑄

𝑔𝑟
𝐼

𝑒
𝑗 (𝜙𝑟

𝐼
−𝜙𝑟

𝑄
)

2
𝑦𝐿 (𝑡) +

1 −
𝑔𝑟
𝑄

𝑔𝑟
𝐼

𝑒
− 𝑗 (𝜙𝑟

𝐼
−𝜙𝑟

𝑄
)

2
𝑦∗𝐿 (𝑡) (2.16)

which is equivalent to the case where 𝑔𝑟
𝐼
= 1 and 𝜙𝑟

𝐼
= 0, with 𝑔𝑟

𝑄
and 𝜙𝑟

𝑄
being imbalanced. We

can call 𝑚𝑟 =
𝑔𝑟
𝑄

𝑔𝑟
𝐼

and 𝜓𝑟 = (𝜙𝑟𝑄 − 𝜙
𝑟
𝐼
) and we get the IQI coefficients for this model

𝛼𝑟 =
1 + 𝑚𝑟𝑒− 𝑗𝜓𝑟

2
(2.17)

𝛽𝑟 =
1 − 𝑚𝑟𝑒 𝑗𝜓𝑟

2
(2.18)
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Figure 2.3. Block diagram representation of a direct conversion transmitter affected by general
IQI. PA denotes the power amplifier.

such that 𝑦′ = 𝛼𝑟 𝑦 + 𝛽𝑟 𝑦∗. These are the expressions for the coefficients that will be used
throughout the rest of this work, they are also considered in [12] [3] [4]. Define 𝑚𝑟 ≜ 1 + 𝜖𝑟 ,
then 𝜖𝑟 and 𝜓𝑟 are real numbers which will be respectively referred to as the receiver amplitude
and receiver phase IQI parameters. Now consider the case where the complex gain is equal to

𝛾𝑏 =
2

𝑔𝑟
𝐼
+𝑔𝑟

𝑄

𝑒 𝑗
𝜙𝑟
𝐼
+𝜙𝑟

𝑄

2 , then

𝑦′𝑏 =

(
𝑔𝑟
𝐼

𝑔𝑟
𝐼
+ 𝑔𝑟

𝑄

𝑒 𝑗
𝜙𝑟
𝑄
−𝜙𝑟

𝐼

2 +
𝑔𝑟
𝑄

𝑔𝑟
𝐼
+ 𝑔𝑟

𝑄

𝑒− 𝑗
𝜙𝑟
𝑄
−𝜙𝑟

𝐼

2

)
𝑦𝐿 +

(
𝑔𝑟
𝐼

𝑔𝑟
𝐼
+ 𝑔𝑟

𝑄

𝑒− 𝑗
𝜙𝑟
𝑄
−𝜙𝑟

𝐼

2 −
𝑔𝑟
𝑄

𝑔𝑟
𝐼
+ 𝑔𝑟

𝑄

𝑒 𝑗
𝜙𝑟
𝑄
−𝜙𝑟

𝐼

2

)
𝑦∗𝐿 ,

(2.19)
where the dependence on time has been suppressed, applying Euler’s identity yields

𝑦′𝑏 =

(
cos

(
𝜙𝑟
𝑄
− 𝜙𝑟

𝐼

2

)
+ 𝑗

𝑔𝑟
𝐼
− 𝑔𝑟

𝑄

𝑔𝑟
𝐼
+ 𝑔𝑟

𝑄

sin

(
𝜙𝑟
𝑄
− 𝜙𝑟

𝐼

2

))
𝑦𝐿

+
(
𝑔𝑟
𝐼
− 𝑔𝑟

𝑄

𝑔𝑟
𝐼
+ 𝑔𝑟

𝑄

cos

(
𝜙𝑟
𝑄
− 𝜙𝑟

𝐼

2

)
− 𝑗 sin

(
𝜙𝑟
𝑄
− 𝜙𝑟

𝐼

2

))
𝑦∗𝐿 . (2.20)

If we call 𝜖𝑟 =
𝑔𝑟
𝐼
−𝑔𝑟

𝑄

𝑔𝑟
𝐼
+𝑔𝑟

𝑄

and 𝜓𝑟 =
𝜙𝑟
𝑄
−𝜙𝑟

𝐼

2 we get

𝛼𝑟 = cos(𝜓𝑟) + 𝑗𝜖𝑟 sin(𝜓𝑟) (2.21)
𝛽𝑟 = 𝜖𝑟 cos(𝜓𝑟) − 𝑗 sin(𝜓𝑟), (2.22)

which is one of the more commonly used models, used in works such as [8] [13] [14] [15].
Any other imbalance distribution between the I and Q branches is mathematically equivalent
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Figure 2.4. Block diagram representation of a heterodyne transmitted affected by general IQI.

to one of the two formulations that have just been presented. Choosing a particular expression
for the coefficients is mostly up to convenience and personal preference. It is also important to
restate that imbalance is a relative property, e.g., the signal from the Q branch can only said to
be imbalanced if its amplitude and phase differ from an expected reference signal. If we used
the I branch as a reference, then it is ideal by definition, any imbalance in the Q branch will then
be quantified with respect to the I branch, leading to the model in (2.17) and (2.18). On the
other hand, if the reference amplitude and phase are set to the average of the I and Q branches,
then both branches are imbalanced by definition, leading to the model in (2.21) and (2.22).

As previously stated, Figures 2.1 and 2.2 contain, respectively, a block diagram description of
a direct conversion and a heterodyne receiver affected by general IQI in both I and Q branches.
They also depict a timing skew in the analog-to-digital Converters (ADCs), which will be further
explained in the next section. The figures consider that any amplitude and phase imbalances
caused by the low-pass filters can be lumped in the LO path. Additionally, if the signal is
sufficiently narrowband (as may be the case with individual OFDM subcarriers), then the timing
offset can be treated as a frequency independent phase offset, which can also be lumped into the
LO path.

Let us now consider imbalance in the modulation. Define the transmitter complex equivalent
of the transmitter LO signal

𝑠𝑡𝐿𝑂 (𝑡) = 𝑔
𝑡
𝐼 cos(𝜔0𝑡 + 𝜙𝑡𝐼) + 𝑗𝑔

𝑡
𝑄 sin(𝜔0𝑡 + 𝜙𝑡𝑄), (2.23)

which satisfies the equality

ℜ𝔢
{
𝑥𝐿 (𝑡)𝑠𝑡𝐿𝑂 (𝑡)

}
= 𝑥𝐼 (𝑡)𝑔𝑡𝐼 cos(𝜔0𝑡 + 𝜙𝐼) − 𝑥𝑄 (𝑡)𝑔𝑡𝑄 sin(𝜔0𝑡 + 𝜙𝑄). (2.24)



15

We can express the above equality as

𝑥𝐼 (𝑡)𝑔𝑡𝐼 cos(𝜔0𝑡 + 𝜙𝑡𝐼) − 𝑥𝑄 (𝑡)𝑔
𝑡
𝑄 sin(𝜔0𝑡 + 𝜙𝑡𝑄)

=

(
𝑥𝐼 (𝑡)𝑔𝑡𝐼 cos(𝜙𝑡𝐼) − 𝑥𝑄 (𝑡)𝑔

𝑡
𝑄 sin(𝜙𝑡𝑄)

)
cos(𝜔0𝑡)

−
(
𝑥𝑄 (𝑡)𝑔𝑡𝑄 cos(𝜙𝑡𝑄) + 𝑥𝐼 (𝑡)𝑔

𝑡
𝐼 sin(𝜙𝑡𝐼)

)
sin(𝜔0𝑡) (2.25)

and rename the terms for the transmitted I and Q components in similar fashion as to what was
done in the demodulation analysis

𝑥′𝐼 (𝑡) = 𝑥𝐼 (𝑡)𝑔𝑡𝐼 cos(𝜙𝑡𝐼) − 𝑥𝑄 (𝑡)𝑔
𝑡
𝑄 sin(𝜙𝑡𝑄) (2.26)

𝑥′𝑄 (𝑡) = 𝑥𝑄 (𝑡)𝑔
𝑡
𝑄 cos(𝜙𝑡𝑄) + 𝑥𝐼 (𝑡)𝑔

𝑡
𝐼 sin(𝜙𝑡𝐼). (2.27)

Again, this can be expressed as a matrix equation[
𝑥′
𝐼
(𝑡)

𝑥′
𝑄
(𝑡)

]
=

[
𝑔𝑡
𝐼
cos(𝜙𝑡

𝐼
) −𝑔𝑡

𝑄
sin(𝜙𝑡

𝑄
)

𝑔𝑡
𝐼
sin(𝜙𝑡

𝐼
) 𝑔𝑡

𝑄
cos(𝜙𝑡

𝑄
)

] [
𝑥𝐼 (𝑡)
𝑥𝑄 (𝑡)

]
(2.28)

Modifying this equation so that it is expressed in terms of 𝑥𝐿 and 𝑥∗
𝐿

yields the following
expression

𝑥′𝐿 (𝑡) =
𝑔𝑡
𝐼
𝑒− 𝑗𝜙

𝑡
𝐼 + 𝑔𝑡2𝑒

𝑗𝜙𝑡2

2
𝑥𝐿 (𝑡) +

𝑔𝑡
𝐼
𝑒 𝑗𝜙

𝑡
𝐼 − 𝑔𝑡2𝑒

𝑗𝜙𝑡2

2
𝑥∗𝐿 (𝑡). (2.29)

Setting 𝑔𝑡
𝐼
= 1, 𝑔𝑡2 = 𝑚𝑡 , 𝜙𝑡𝐼 = 0, and 𝜙𝑡

𝑄
= 𝜓𝑡 , yields the coefficients

𝛼𝑡 =
1 + 𝑚𝑡𝑒𝜓𝑡

2
(2.30)

𝛽𝑡 =
1 − 𝑚𝑡𝑒𝜓𝑡

2
(2.31)

that were used in [3] and will be used in this work.
Figures 2.3 and 2.4 contain, respectively, a block diagram description of a direct conversion

and a heterodyne transmitter affected by general IQI in both I and Q branches. Like the
previously presented receivers, they include a timing skew in the digital-to-analog Converters
(DACs). Once again, if the signal is sufficiently narrowband, then the timing offset can be treated
as a frequency independent phase offset, which can be lumped into the LO path.

2.3 Dependence on frequency

So far, only frequency independent IQI models have been considered. Nevertheless, IQ im-
balance is best modeled as a frequency dependent effect due to a variety of reasons. In
down-conversion, the I and Q branches are lowpass filtered after the mixing stage. These filters
are naturally not perfectly matched to one another, causing imbalance that depends nonlinearly
on frequency, specially on the band edge. Furthermore, any timing skew Δ𝑡𝑠 between I and Q
branch ADCs or DACs will generate a linear in frequency phase imbalance of 𝜔0Δ𝑡𝑠, which is
comparable to a Doppler shift. Mixer related IQI is generally frequency independent [16]. In
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OFDM systems, modeling frequency dependent IQI requires only assigning a different value
of the IQI coefficients for each subcarrier. This is possible because, as we have shown in the
previous section, IQ imbalance models are mathematically equivalent to each other and may
be translated by absorbing a conversion coefficient into the complex channel gain. However, if
one wants to precisely estimate the true channel and received signal before IQI this approach is
not necessarily valid because the conversion coefficient would be different for each frequency,
effectively distorting the channel estimate. On the other hand, for IQI compensation purposes
only, modeling frequency dependent IQI as a set of coefficients associated to each subcarrier is
perfectly valid. For the remainder of this work, we will mainly address frequency independent
IQI compensation and estimation, while some remarks about adapting the proposed techniques
to the frequency dependent case will be occasionally made.
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3 REVIEW OF IQI COMPENSATION METHODS

We will now present a survey of IQI estimation and compensation approaches. It is important
to state that the mentioned references use different IQI models, i.e., some of them consider IQI
to be equally divided between the I and Q branches, while others consider the I branch to be
preserved intact while all IQI is offloaded into the Q branch. As discussed in Chapter 2, both
models are theoretically equivalent, we preserve the original expressions from the references
nonetheless. Let us subdivide the existing methods by the fundamental technique used.

3.1 Blind estimators

By assuming that the I and Q components are jointly Gaussian, independent, and that the
input I and Q signals are both zero mean with the same variance, Aziz et al. [17] derive the
probability density function (PDF) of the received signal at the I and Q branches with an additive
white gaussian noise (AWGN) channel. These assumptions are grounded in the statement that
OFDM signals typically exhibit Gaussian distributions [18]. The authors then show that the
derived distribution closely approximates (by the Kullback-Leibler divergence and the Hellinger
distance) practical distributions from the transmission of wideband code division multiple access
(WCDMA) and long term evolution (LTE) signals. They also state, however, that derived and
the true distributions have a significant difference at SNRs lower than approximately 12 dB.
Nonetheless, the derived distribution is used for its simplicity in the estimation procedure. They
state that the IQI coefficients can be estimated by solving the system of nonlinear equations

𝛽2
2
(1𝑇p) − 𝛾(p2Qy) = 0 (3.1)

𝛼2
2
(1𝑇p) − 𝛾(p1Qy) = 0 (3.2)

𝛼1
2
(1𝑇p) − 𝛾(p1Iy) = 0 (3.3)

𝛽1
2
(1𝑇p) − 𝛾(p2Iy) = 0 (3.4)

where 𝛼1,2, 𝛽1,2, p, p1, p2, are auxiliary variables defined in [17], and Iy and Qy are vector forms
of the received signals in the I and Q branches, respectively, also explicitly defined in [17].

By assuming that the received signal is circularly symmetric, Matera and Sterle [15] derive
a pair of maximum likelihood (ML) blind estimators over a single input single output (SISO)
channel. First they consider the transmission of an M-ary quadrature amplitude modulation (M-
QAM) constellation over a flat-fading noisy channel and derive the likelihood for the transmission
of 𝑁 symbols

Λ(y; �̂�, 𝜃, �̂�2
𝑛 ) =

𝑁∏
𝑘=1

Λ(y𝑘 ; �̂�, 𝜃, �̂�2
𝑛 ) (3.5)

Λ(y𝑘 ; �̂�, 𝜃, �̂�2
𝑛 ) =

𝑀∑︁
ℓ=1

𝑝ℓ

𝜋�̂�2
𝑛 |C(�̂�, 𝜃) |1/2

exp
{
− 1
�̂�2
𝑛

(y𝑘 −mℓ (�̂�, 𝜃))𝑇C−1(y𝑘 −mℓ (�̂�, 𝜃))
}
,

(3.6)



18

where

y𝑘 =
[
𝑦𝑐,𝑘 𝑦𝑠,𝑘

]𝑇 (3.7)

mℓ (�̂�, 𝜃) =
[
(1 + �̂�) (cos(𝜃/2)𝑎ℓ − sin(𝜃/2)𝑏ℓ)
(1 − �̂�) (cos(𝜃/2)𝑏ℓ − sin(𝜃/2)𝑎ℓ)

]
(3.8)

C(�̂�, 𝜃) =
[
(1 + �̂�)2 (�̂�2 − 1) sin(𝜃)

(�̂�2 − 1) sin(𝜃) (1 − �̂�)2
]
, (3.9)

in which 𝑝ℓ is the probability of transmitting the ℓth symbol of the M-QAM alphabet 𝑥ℓ =

𝑎ℓ + 𝑗 𝑏ℓ, y𝑘 is the 𝑘th received symbol, �̂�𝑟 and 𝜃 are the trial values of the IQ imbalance
coefficients and �̂�2

𝑛 is trial value for the noise variance. They recognize that, due to the
summation in (3.6) over the 𝑀 constellation symbols and due to the nonlinear nature of ML
estimation, this derived estimator has a high computational complexity. They follow this up
by presenting a Gaussian ML estimation approach, which assumes that the transmitted I and
Q symbols 𝑎ℓ and 𝑏ℓ are uncorrelated wide-sense stationary (WSS) white Gaussian random
processes with variance 1

2 . Under these assumptions, the ML blind estimators for the IQI
parameters can be expressed as

�̂� =

√︃∑𝑁
𝑘=1 𝑦

2
𝑐,𝑘
−

√︃∑𝑁
𝑘=1 𝑦

2
𝑠,𝑘√︃∑𝑁

𝑘=1 𝑦
2
𝑐,𝑘
+

√︃∑𝑁
𝑘=1 𝑦

2
𝑠,𝑘

(3.10)

𝜃 = − sin−1 ©«
∑𝑁
𝑘=1 𝑦𝑐,𝑘 𝑦𝑠,𝑘√︃∑𝑁

𝑘=1 𝑦
2
𝑐,𝑘

∑𝑁
𝑘=1 𝑦

2
𝑠,𝑘

ª®®¬ (3.11)

3.2 MMSE and WL-MMSE equalizers

The conventional methods of MMSE estimation can also be applied to compensate the effects
of IQI. One of the earliest published attempts to use this method for IQI compensation is
by Schuchert et al. [19]. They consider that, in an OFDM context, the received symbol in
subcarrier 𝑘 will have an interfering mirror image from subcarrier −𝑘 and set up an adaptive
filter using signals from these subcarrier pairs. They propose what is essentially equivalent to a
WL frequency domain equalizer and train it with a variation of the WL-LMS algorithm

c𝑖+1(𝑘) = c𝑖 (𝑘) + 𝜇a′𝑖 (𝑘)𝐸∗𝑖 (𝑘) (3.12)
𝐸𝑖 (𝑘) = 𝐷𝑖 (𝑘) − 𝑌𝑖 (𝑘) (3.13)
𝑌𝑖 (𝑘) = c𝐻𝑖 (𝑘)a′𝑖 (𝑘), (3.14)

where, with the subscript 𝑖 denoting the index of the OFDM symbol, c𝑖 (𝑘) =
[
𝑐∗
𝑖
(𝑘) 𝑐∗

𝑖
(−𝑘)

]𝑇
is the coefficient vector, a′

𝑖
(𝑘) =

[
𝑎′
𝑖
(𝑘) 𝑎′

𝑖
(−𝑘)

]𝑇 is the data input vector, 𝐷𝑖 (𝑘) is the reference
signal (either a pilot subcarrier or decision directed symbols), and 𝑌𝑖 (𝑘) is used as the estimate
for the transmitted symbols 𝑎𝑖 (𝑘). From this they are able to estimate the transmitted symbols by
jointly compensating for IQI and channel effects. They verify the effectiveness of their method
by simulating the transmission of a digital video broadcast - terrestrial (DVB-T) specified OFDM
signal with 64-QAM constellation for both a linear channel with IQI case and an AWGN channel
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with IQI. Validation is done by visual inspection of the constellations and no MSE values or are
presented.

Tsui and Lin [20] propose a somewhat similar approach, but with a coupled pair of equalizers.
This is necessary because they do not formulate IQI compensation as a complex-valued estima-
tion problem, but instead consider it as a pair of simultaneous real-valued estimation problems.
For compensating IQI without any channel effects, they propose the following set of equations
for adapting the filter coefficients

𝑊𝑖𝑖,𝑘 (1) = 𝑊𝑖𝑖,𝑘 (1) + 𝜇𝜀𝑖,𝑘𝑖𝑟,𝑘 (3.15)
𝑊𝑖𝑖,𝑘 (2) = 𝑊𝑖𝑖,𝑘 (2) + 𝜇𝜀𝑖,𝑘𝑖𝑟,−𝑘 (3.16)
𝑊𝑞𝑖,𝑘 (1) = 𝑊𝑞𝑖,𝑘 (1) + 𝜇𝜀𝑞,𝑘𝑞𝑟,𝑘 (3.17)
𝑊𝑞𝑖,𝑘 (2) = 𝑊𝑞𝑖,𝑘 (2) + 𝜇𝜀𝑞,𝑘𝑞𝑟,−𝑘 (3.18)

𝜀𝑖,𝑘 = 𝑑𝑖,𝑘 − 𝑖𝑡,𝑘 (3.19)
𝜀𝑞,𝑘 = 𝑑𝑞,𝑘 − 𝑞𝑡,𝑘 (3.20)

𝑖𝑡,𝑘 = 𝑊𝑖𝑖,𝑘 (1)𝑖𝑟,𝑘 −𝑊𝑖𝑖,𝑘 (2)𝑖𝑟,−𝑘 +𝑊𝑞𝑖,𝑘 (1)𝑞𝑟,𝑘 +𝑊𝑞𝑖,𝑘 (2)𝑞𝑟,−𝑘 (3.21)
𝑞𝑡,𝑘 = 𝑊𝑞𝑖,𝑘 (1)𝑖𝑟,𝑘 +𝑊𝑞𝑖,𝑘 (2)𝑖𝑟,−𝑘 +𝑊𝑖𝑖,𝑘 (1)𝑞𝑟,𝑘 −𝑊𝑖𝑖,𝑘 (2)𝑞𝑟,−𝑘 , (3.22)

where 𝑑𝑖,𝑘 and 𝑑𝑞,𝑘 are decision directed outputs of the received signals in the I and Q branches
at the 𝑘th subcarrier, 𝑖𝑟,𝑘 and 𝑞𝑟,𝑘 , respectively.The filter coefficients 𝑊 are all constant in 𝑘 if
IQI is frequency independent. To address the impacts of IQI in channel estimation/correction,
they state that, using the long training signal from 802.11a, two cases exist: when the symbols
from the long preamble at subcarrier 𝑘 and its mirror image −𝑘 have the same phase or opposite
phases. They propose using two independent equalizers for each of these cases. Naturally, if
we generalize to any training sequence with more than two cases, i.e., anything different from
a binary phase shift keying (BPSK) equivalent constellation, then the number of equalizers
needed will grow with number of existing phase differences, which may be problematic in some
contexts.

By using the WL-MMSE estimator, Chen et al. [21] formulate the WL-MMSE channel
estimation and data detection problems. They apply the known expressions in [22] [23] to
the IQI equivalent channel estimation problem and arrive estimates for two cases: when the
IQI coefficient matrices are known, and when the IQI coeffient matrices are unknown but the
variance matrices of the equivalent channels are known as well as the complementary covariance
matrix between them. Both of these cases are hard to achieve in practice. In the first case, if we
already know the IQI coefficient matrices, then channel estimation is straightforward because
IQI can be compensated with an WL operator directly and then the estimation can be performed
as normal. The other case requires equivalent channel covariance matrices, which is notoriously
difficult information to achieve, specially in fast fading channels. In this sense we may say
that [21] provides more of a theoretical insight into the qualities of WL-MMSE estimation and
detection applied to an IQI affected transmission.

3.3 Other estimators

This section includes other kinds of estimators that do not directly fit the two categories cited
above. One of the most cited approaches was introduced by Tubbax et al. [13]. They consider
that, in a decision directed or pilot sequence context where the transmitted symbol is known,
in a noise free unit gain ideal channel transmission, the symbols at any carriers 𝑖 and 𝑗 should
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satisfy the system of equations

(𝑑𝑟)𝑖 = 𝛼(𝑑𝑡)𝑖 + 𝛽(𝑑∗𝑡 )𝑚(𝑖) (3.23)
(𝑑𝑟) 𝑗 = 𝛼(𝑑𝑡) 𝑗 + 𝛽(𝑑∗𝑡 )𝑚( 𝑗) , (3.24)

where 𝑚(𝑖) denotes the mirror image carrier for carrier 𝑖, and similarly for 𝑚( 𝑗). They relax
any constraints between 𝛼 and 𝛽 that would make this a nonlinear system of equations under
the justification that solving this system in a mobile terminal is non-trivial. Solving this system
yields

𝛼 =
(𝑑𝑟)𝑖 (𝑑∗𝑡 )𝑚( 𝑗) + (𝑑𝑟) 𝑗 (𝑑∗𝑡 )𝑚(𝑖)
(𝑑𝑡)𝑖 (𝑑∗𝑡 )𝑚( 𝑗) − (𝑑𝑡) 𝑗 (𝑑∗𝑡 )𝑚(𝑖)

(3.25)

𝛽 =
(𝑑𝑟)𝑖 − 𝛼𝛼(𝑑𝑡)𝑖
(𝑑∗𝑡 )𝑚(𝑖)

(3.26)

for every non-zero carrier in the current OFDM symbol. They propose averaging the estimated
values over all non-zero subcarriers to achieve a final value. However, these equations are only
valid in an ideal noiseless channel. They present a series of derivations for the unrealistic, but
didactic, case of perfect channel state information (CSI), and then tackle the issue of practical
channel estimation under IQI. Let c be the vector of exact frequency domain channel coefficients,
then it is stated that IQI degrades the channel estimate h obtained from a long training sequence
(LTS), in a high performance radio local area network 2 (HiperLAN/2) context, in the following
form

h = 𝛼c + 𝛽 · lts2 · (c∗)𝑚, (3.27)

where the 𝑚 subscript denotes frequency mirroring, and lts2 = lts · (lts)𝑚, i.e., it is the
elementwise product of the LTS with its frequency mirror image. They verify that IQI indeed
has a significant impact on channel estimation and propose compensating the channel estimate
by applying the correction

c =
𝛼∗h − 𝛽(lts2 · h∗)𝑚
|𝛼 |2 − |𝛽 |2

. (3.28)

This, of course, requires the knowledge of the IQI coefficients. They address this by considering
the system of equations formed by two adjacent carriers and assuming that 𝑐𝑖 ≈ 𝑐𝑖+1 and IQI is
approximately non-existent, i.e., 𝛼 ≈ 1 and 𝛽 ≈ 0. Taking two adjacent carriers

ℎ𝑖 = 𝛼𝑐𝑖 + 𝛽 · lts2𝑚(𝑖) · (c∗)𝑚(𝑖) (3.29)
ℎ𝑖 = 𝛼𝑐𝑖+1 + 𝛽 · lts2𝑚(𝑖+𝑖) · (c∗)𝑚(𝑖+𝑖) , (3.30)

applying the aforementioned assumptions and solving for 𝛼 and 𝛽 yields

𝛽𝑒𝑠𝑡 =
ℎ𝑖+1 − ℎ𝑖

lts2𝑚(𝑖) (ℎ∗𝑚(𝑖) + ℎ
∗
𝑚(𝑖+1))

(3.31)

𝛼𝑒𝑠𝑡 =

√︃
1 − (ℑ𝔪 {𝛽𝑒𝑠𝑡})2 − 𝑗

ℜ𝔢 {𝛽𝑒𝑠𝑡}ℑ𝔪 {𝛽𝑒𝑠𝑡}√︃
1 − (ℑ𝔪 {𝛽𝑒𝑠𝑡})2

. (3.32)
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Applying these equations to all valid carrier transitions yields one estimate for each transition,
these are then averaged out in a final estimate for the IQI coefficients. The resulting estimates
can then also be applied in (3.28) to get an estimate for the true channel coefficients. From the
assumptions we can conclude that the method in [13] is only effective if IQI effects are small,
because of the 𝛼 ≈ 1 and 𝛽 ≈ 0 assumptions, and if the channel has a relatively large coherence
bandwidth compared to the subcarrier spacing.

3.4 Joint transmitter and receiver IQI compensation

So far we have only shown methods that deal exclusively with the receiver IQI compensation
problem. However, some schemes also attempt joint transmitter and receiver IQI estima-
tion/compensation. Zhang et al. [24] propose an iterative block decision feedback equalization
(IBDFE) [25] scheme for IQI compensation. They put forward an iterative receiver to compen-
sate for receiver and transmitter IQ imbalance in single carrier frequency domain equalization
(SC-FDE) systems. They propose hard and soft detection methods to estimate the necessary
parameters for updating the feedforward and feedback filters used in the proposed receiver
architecture. We refer the reader directly to [24] for the detailed explanation of the procedure.

Other approach is considered by Zhang et al. [26] based on reduced number of parameters
direct least squares (DLS-RNP) and alternating least squares (ALS) techniques. They consider
a SISO system with a guard interval affected by transmitter and receiver IQI, according to the
system model

y = S(𝜇𝑟𝜇𝑡h + 𝜈𝑟𝜈∗𝑡 h∗) + S∗(𝜇𝑟𝜈𝑡h + 𝜈𝑟𝜇∗𝑡 h∗) + w, (3.33)

where, 𝜇 and 𝜈 are IQI coefficients with the subscripts 𝑟 and 𝑡 respectively denoting the
transmitter and receiver, w = 𝜇𝑟n + 𝜈𝑟n∗ is IQI affected AWGN, and h is the channel impulse
response vector, S is the data matrix defined in a way that the convolution of the transmitted
data with the channel impulse response can be expressed as Sh by discarding the guard interval.
They state that, if the IQI coefficients are known, then IQI can be compensated in the same way
as [14] at the transmitter and receiver, respectively, by applying the corrections

s̃ =
s − 𝜂𝑡s∗

𝜇𝑡 (1 − |𝜂𝑡 |2)
(3.34)

ỹ =
y − 𝜂𝑟y∗

𝜇𝑟 (1 − |𝜂𝑟 |2)
, (3.35)

where 𝜂𝑡 = 𝜈𝑡
𝜇𝑡

and 𝜂𝑟 = 𝜈𝑟
𝜇∗𝑟

. By considering the simplification that IQI is approximately non-
existent, i.e., 𝜇𝑟 , 𝜇𝑡 ≈ 1, they suppress these terms in (3.34) and (3.35) and consider two cases:
when g = 𝜇𝑟𝜇𝑡h is known, and when 𝜂𝑟 and 𝜂𝑡 are known. It can be said that these cases
are somewhat unrealistic, because both 𝜂𝑟,𝑡 and g are hard to directly estimate. Nonetheless,
they propose using equivalent channel estimates ĉ𝑋 =

[
ĉ𝑇1 ĉ𝑇2

]𝑇
= (S𝐻

𝑋
S𝑋)−1S𝐻

𝑋
y, where

S𝑋 =
[
S S∗

]
, to estimate g assuming 𝜂𝑟 and 𝜂𝑡 are known

ĝ = C𝜼𝐻𝑋 (𝜼𝑋𝜼𝐻𝑋 )−1, (3.36)

where C =
[
c1 − 𝜂𝑟c∗2 c1 − 𝜂∗𝑡 c2

]
= g𝜼𝑋 , with 𝜼𝑋 =

[
1 − |𝜂𝑟 |2 1 − |𝜂𝑡 |2

]
. For estimating 𝜂𝑟

and 𝜂𝑡 assuming g is known, they propose solving the least squares optimization problem

{𝜂𝑟 , 𝜂𝑡} = argmin
𝜂𝑟 ,𝜂𝑡∈C

∥c1 − g − 𝜂𝑟𝜂∗𝑡 g∗∥2 + ∥c2 − 𝜂𝑡g − 𝜂𝑟g∗∥2, (3.37)
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which is not a convex problem in general. They propose solving it with an ALS technique by
sequentially fixing one parameter and optimizing the other in alternating fashion. It is then
shown that the proposed alternating optimization procedure converges.

One of the more innovative approaches is the one introduced by Cheng et al. [27] for SISO
SC-FDE systems. By assuming that the coherence bandwidth of the channel is large enough that
the channel variation between adjacent subcarriers should be smooth, they state that ignoring
IQI in channel estimation leads to sharp fluctuation in adjacent frequency channel estimates due
to mirror image frequency interference. In light of this, they define a quantity called the channel
variation energy (CVE)

CVE ≜
𝑁−2∑︁
𝑘=0

���̂�𝑘+1 − �̂�𝑘 ��2 , (3.38)

where �̂�𝑘 is obtained by

�̂�𝑘 =
𝐴∗
𝑘
𝑌𝑘 − 𝐵𝑁−𝑘𝑌 ∗𝑁−𝑘
|𝐴𝑘 |2 − |𝐵𝑁−𝑘 |2

(3.39)

𝐴𝑘 = 𝛼𝑇𝛼𝑅𝑋𝑘 + 𝛽𝑇𝛼𝑅𝑋∗mod(𝑁−𝑘,𝑁) (3.40)
𝐵𝑘 = 𝛽

∗
𝑇 𝛽𝑅𝑋𝑘 + 𝛼∗𝑇 𝛽𝑅𝑋∗mod(𝑁−𝑘,𝑁) , (3.41)

where {𝑋𝑘 } is the discrete Fourier transform (DFT) of x, the ideal complex baseband signal
vector, and {𝑌𝑘 } is the DFT of y, the received signal vector. They express 𝛼𝑇 and 𝛼𝑅 as functions
of 𝛽𝑇 and 𝛽𝑅, respectively. Then they arrive at expressions for 𝛽𝑇 and 𝛽𝑅 that minimize the
CVE in the form: 𝛽𝑇 = 𝜙1(𝛽𝑅, 𝛽𝑇 ) and 𝛽𝑅 = 𝜙2(𝛽𝑅, 𝛽𝑇 ). Defining the objective function

𝐹 (𝛽𝑅, 𝛽𝑇 ) =
1
| 𝑓 |2
· 1
|𝑔 |2

, (3.42)

where 𝑓 = 𝛽𝑇 −𝜙1(𝛽𝑅, 𝛽𝑇 ) and 𝑔 = 𝛽𝑅−𝜙2(𝛽𝑅, 𝛽𝑇 ), the estimation problem becomes a question
of maximizing 𝐹. They state the difficulty of applying gradient-based methods to this problem
and propose employing a Rosenbrock search [28]. The authors also propose a least squares (LS)
compensation scheme by making the familiar almost ideal IQI assumptions, i.e., 𝛼𝑅,𝑇 ≈ 1 and
𝛽𝑅,𝑇 ≈ 0, and neglecting some higher order terms in the expressions.

There is also the more expensive option of hardware-based IQI compensation, such as the
method proposed by Aoki et al. [16]. They design a frequency-dependent IQI calibration
module for 5G mmWave transceiver chipsets. The proposed approach uses loopback data from
a known training signal to configure a complex finite impulse response (FIR) filter that is used
to compensate the IQI. This approach, even if effective, requires dedicated hardware and it is
not suitable to be applied in already deployed devices, once more reinforcing the flexibility of
software-based IQI compensation.

This concludes our survey of IQI compensation/estimation methods. Naturally, other tech-
niques exist in the literature, but the majority of them have reasonable similarities with the set of
approaches included herein. The reader is encouraged to read in more detail the aforementioned
references to get a deeper understanding of each procedure.
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4 IQI AND POSITIONING

In this chapter, we will assess the impacts of IQI in the positioning accuracy of a single anchor
line-of-sight (LOS) scenario. We will then introduce a timing robust pilot sequence based
IQI compensation algorithm, which will be applied in improving the accuracy of positioning
estimation in a flat fading scenario. The impacts of changing the length of the pilot sequence
and the SNR are also explored, with the performance of the proposed method being compared
to a blind estimator.

4.1 Introduction to positioning

Positioning schemes are usually classified into 3 categories: timing-based, angle-based, and
hybrid. Timing-based techniques rely on estimating the time of arrival (ToA) or time difference
of arrival (TDoA) of the signal between the transmitter and receivers with known position,
also called anchors. Timing-based methods require some knowledge of the transmitted signal,
typically of a transmission preamble such as the primary synchronization signal (PSS) in LTE
and 5G NR. The performance of some TDoA positioning methods is explored in [29], while [30]
proposes a TDoA based positioning algorithm for non-line-of-sight (NLOS) scenarios. Angle-
based techniques utilize some combination of transmit beamforming and measuring the phase
differences at the receiver antenna elements to estimate the angle of arrival (AoA) formed by
the transmitter and each receiver. The densely packed antenna elements necessary for massive
MIMO, enabled by mmWave frequency bands, make it possible to achieve high resolution
AoA estimates using some well-established algorithms such as multiple signal classification
(MUSIC) and estimation of signal parameters via rotational invariant techniques (ESPRIT). A
comparison between the performance of these methods is laid out in [31]. Angle-based methods
have the advantage of not requiring prior knowledge about the received signal, as well as being
robust to synchronization errors. Hybrid techniques use a mixture of angle-based and timing-
based methods to estimate the position of the transmitter. One notable example of a hybrid
positioning method is the network localization and navigation (NLN) paradigm, introduced in
[32] and extensively detailed in [33], which explores spatio-temporal cooperation between nodes
allowing both angle-based and timing-based measurements to be used to compute the positional
beliefs of the nodes in the network. Alternative power-based methods such as using enhanced
cell ID (E-CID) in LTE networks [34], or received signal strength (RSS)-based direction of
arrival estimation for wireless sensor networks (WSNs) have also been proposed [35].

For its enhanced positioning services, 5G requires sub-meter positioning accuracy in a
variety of indoors and outdoors scenarios [36]. These requirements cannot be satisfied using
only the traditional methods prevalent in LTE, such as global navigation satellite system (GNSS)
localization and TDoA based methods, mainly because of their possible poor indoor performance
and vulnerability to clock synchronization error between base stations (BSs) [37] [38]. Beyond
the actual method used for positioning estimation, the quality and reliability of the hardware
deployed must allow for sufficient accuracy in the necessary measurements for positioning
estimation.

4.2 System model

Consider the case of a single receiver and transmitter with a LOS link. Let s(𝑡) be the base-
band equivalent transmitted signal at time 𝑡. The baseband equivalent received signal before
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downconversion is given by

x(𝑡) = 𝛾a𝑅 (𝜙𝑅)a𝐻𝑇 (𝜙𝑇 )s(𝑡 − 𝜏) + w(𝑡)
= Hs(𝑡 − 𝜏) + w(𝑡),

(4.1)

where 𝛾 is the complex path gain, a𝑅 (𝜙𝑅) and a𝑇 (𝜙𝑇 ) are, respectively, the receiver and
transmitter array response vectors as a function of the angles of arrival and departure, 𝜏 is the
propagation delay from the transmitter to the receiver, and w(𝑡) is complex circularly symmetric
AWGN. The channel matrix H is 𝑁𝑅 × 𝑁𝑇 where 𝑁𝑅 and 𝑁𝑇 denote the number of receive and
transmit antennas, respectively.

In a positioning context, position estimates rely on extracting the angle of arrival or departure
and the distance or ranging measurements from the received signal. The angle of arrival
estimates are usually performed using an algorithm such as MUSIC [39] or ESPRIT [40]. In
the LOS case, ranging is usually done by measuring the time of flight (ToF) 𝜏.

Non-idealities of the in-phase and quadrature components of the LO signal of the con-
verter (up or down converter) corrupt the received signal and deteriorate the quality of those
estimates giving rise to IQI. From an economic and practical standpoint, it is convenient to
mitigate these effects in software or baseband processing, allowing some constraints in the
manufacturing process to be slightly relaxed. Let 𝚯𝐴 and 𝚯𝐵 denote the receiver IQI matrices,
𝚯𝐴 = diag(𝛼1, . . . , 𝛼𝑁𝑅

) and 𝚯𝐵 = diag(𝛽1, . . . , 𝛽𝑁𝑅
), these are diagonal matrices of possibly

distinct receiver IQI coefficients as defined in (2.17) and (2.18). These matrices allow us to
model imbalanced IQ demodulation at each RF chain [4]. The IQI corrupted received signal is
computed as

y = 𝚯𝐴x +𝚯𝐵x∗ = 𝚯x𝑒, (4.2)

where x∗ is the complex conjugate of x, 𝚯 =
[
𝚯𝐴 𝚯𝐵

]
, x𝑒 =

[
x𝑇 x𝐻

]𝑇 . This is a straightfor-
ward extension of the IQI model in Section 2.2 to vector form. The receiver IQ demodulation
under IQ imbalance is represented in Fig. 4.1.

The way that the equations have been defined, by using the baseband equivalent, allows us
to bypass the upconversion and downconversion operations and focus only in the IQI effects.
However, in a more detailed graphical representation of the IQ demodulation such as the one in
Fig. 4.1, x(𝑡) must be distinguished from x𝑅𝐹 (𝑡) which is the signal that would be physically
received at the antenna.

Assume that the channel propagation delay is well approximated by an integer number of
samples. Then each transmitted pilot sequence sample s(𝑖), where 𝑖 denotes the discrete time
sample index, has a corresponding received signal sample y(𝑖) at the appropriate sampling time
accounting for channel propagation time following the relation

y(𝑖) = 𝚯H𝑒s𝑒 (𝑖) + n(𝑖) = Gs𝑒 (𝑖) + n(𝑖), (4.3)

where s𝑇𝑒 (𝑖) = [ s𝑇 (𝑖) s𝐻 (𝑖) ]𝑇 , H𝑒 is block diagonal of the form diag(H,H∗), and n = 𝚯𝐴w+𝚯𝐵w∗.
From (4.3) we can write

Y =
[
y(0) · · · y(𝑁𝑠 − 1)

]
= 𝚯H𝑒S𝑒 + N (4.4)

S𝑒 =
[
s𝑒 (0) · · · s𝑒 (𝑁𝑠 − 1)

]
(4.5)

N =
[
n(0) · · · n(𝑁𝑠 − 1)

]
. (4.6)

Manipulating this further, using the identity

vec(𝚯H𝑒S𝑒) = (S𝑇𝑒 ⊗ 𝚯)vec(H𝑒) (4.7)
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Figure 4.1. Receiver IQ demodulation scheme under IQ imbalance. Inside the IQ demodulator,
the triangle block denotes an amplitude gain and the square block denotes a phase increment.

we get S𝑇𝑒 ⊗𝚯 = qS𝑇𝑒 q𝚯, where qS𝑒 = S𝑒 ⊗ I𝑁𝑅
and q𝚯 = I2𝑁𝑇

⊗𝚯, ⊗ denotes the Kronecker product.
This yields

qy = qS𝑇𝑒 q𝚯qh𝑒 + qn = qS𝑇𝑒qg + qn, (4.8)

where qh𝑒 = vec(H𝑒) and qn = vec(N). We call qg = q𝚯qh𝑒 the vectorized equivalent channel. By
writing the equivalent channel in this vectorized form, using (4.8) we can express its covariance
and complementary covariance matrix estimates as

R
qgest = (qS

𝑇
𝑒 )†(E

{
qyqy𝐻

}
− R

qn) (qS∗𝑒)† (4.9)

Q
qgest = (qS

𝑇
𝑒 )†(E

{
qyqy𝑇

}
−Q

qn) (qS𝑒)† (4.10)

where † denotes the pseudoinverse, R
qn = E

{
qnqn𝐻

}
, and Q

qn = E
{
qnqn𝑇

}
.

4.3 Equivalent channel estimation

This section and the remainder of this thesis makes use of the concept of a widely linear (WL)
operator. If the reader is unfamiliar with the basics of WL operators and WL filtering, a very
brief summary of the definitions and basic concepts is presented in Appendix 1. The reader is
also directed to the references [22] [23] as worthwhile introductions to the topic.

It is not generally possible to leverage the information from a known pilot sequence for
improved IQI coefficient estimator performance unless the channel is precisely estimated, other-
wise we cannot separate the channel effects and the IQI effects on the pilot sequence. Also the
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channel cannot be estimated independently from the IQI, because every received sample is only
observed after IQI. Since IQI is essentially a WL operator, to properly capture the effects of IQI
in the received sequence it is necessary to estimate the channel also as a WL operator. Besides,
for reasons that will be better clarified in the following section, to derive a timing-robust pilot
sequence based IQI estimator in the way that we intend, it is fundamental that the estimated
equivalent channel be consistent with the estimated covariance and complementary covariance
matrices of the received data. Traditional least squares channel estimation by itself does not
necessarily have this property and may not yield the desired results for our proposed approach.

For brevity, we will refer to the vectorized channel and equivalent channel simply as the
channel and equivalent channel, respectively. Assume that the equivalent channel qg is constant
and we only observe one single realization during the transmission of the whole sequence.
Thus, we cannot estimate the actual correlation and complementary correlation by averaging
over multiple realizations, we are only able to estimate qgqg𝐻 and qgqg𝑇 , which is sufficient for our
application.

First, let us try to estimate it from the eigenvalue decomposition (EVD) of the equivalent
channel sample autocorrelation matrix. We can perform a rank 1 approximation of this matrix
such as R̃

qg ≈ 𝜆1u1u1
𝐻 . Here

√
𝜆1u1 is an approximation for the channel using the square root

of the largest eigenvalue and its eigenvector, respectively. This approach contains insufficient
information since there exist infinite vectors that satisfy the above relation, up to a complex
phase shift. To eliminate the phase ambiguity, we must resort to a more complete description of
the channel using the sample augmented covariance matrix R̃𝑒,qg.

We will now perform the augmented eigenvalue decomposition (AEVD), as described in
[23], of the sample channel augmented covariance matrix and use it to obtain an approximation
for the equivalent channel. The following procedure with the AEVD allows us to find the vector
that has the desired covariance and complementary covariance matrices. We will treat qg as a
deterministic (not random) vector. This is justified by the assumption that the channel is constant
throughout the whole transmission and only one transmission ever takes place, thus treating the
channel as a random quantity is unnecessary. We keep the nomenclature of covariance and
complementary covariance matrices for convenience, but it must be clear that the expectation
operator is irrelevant in the deterministic case, e.g. R

qg = E
{
qgqg𝐻

}
= qgqg𝐻 .

Let qg be an arbitrary complex vector in C𝑛, and let qg = a + 𝑗b and z = [ a𝑇 b𝑇 ]𝑇 . Also define

T =

[
I 𝑗I
I − 𝑗I

]
(4.11)

We write the EVD of Rz = zz𝑇 as

Rz = U
[ 1

2𝚵1 0
0 1

2𝚵2

]
U𝐻 , (4.12)

where the eigenvalues are organized in an descending order and 𝚵1 and 𝚵2 are the diagonal
matrices with the odd and even eigenvalues

𝚵1 = Diag(𝜆1, 𝜆3, . . . , 𝜆2𝑛−1) (4.13)
𝚵2 = Diag(𝜆2, 𝜆4, . . . , 𝜆2𝑛). (4.14)

From (4.12) and the relation R𝑒,qg = TRzT𝐻 , where

R𝑒,qg =

[
qg
qg∗

] [
qg𝐻 qg𝑇

]
(4.15)
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we get

R𝑒,qg =

[
R

qg Q
qg

Q∗
qg R∗

qg

]
= V𝚲𝑒V𝐻 (4.16)

V =

(
1
2

TUT𝐻

)
=

[
V1 V2
V∗2 V∗1

]
(4.17)

𝚲𝑒 =
1
2

[
𝚵1 + 𝚵2 𝚵1 − 𝚵2
𝚵1 − 𝚵2 𝚵1 + 𝚵2

]
=

[
𝚲1 𝚲2
𝚲2 𝚲1

]
, (4.18)

where R
qg = E

{
qgqg𝐻

}
and Q

qg = E
{
qgqg𝑇

}
Let us take the AEVD of R𝑒,qg = V𝚲𝑒V𝐻 and explicitly carry out the block matrix products.

For our purposes, we only care about the top left block R
qg. Because qg is not a random

variable, R
qg is a rank 1 matrix and all the eigenvalues besides 𝜆1 are zero. In that case,

𝚲1 = 𝚲2 = Diag(𝜆1, 0, . . . , 0), and the top left block, which corresponds to the covariance
matrix of x, is equal to 𝜆1(v1v𝐻1 + v2v𝐻1 + v1v𝐻2 + v2v𝐻2 ), where v1 and v2 are the eigenvectors
associated with 𝜆1 in V1 and V2, respectively, i.e., the first column if the eigenvectors are
arranged in decreasing order. For estimating the equivalent channel, we first take the AEVD
of the sample augmented covariance matrix of the equivalent channel R̃𝑒,qg = Ṽ�̃�𝑒Ṽ𝐻 . Denote
the largest eigenvalue by �̃�1 and denote its associated eigenvectors in Ṽ1 and Ṽ2 as ṽ1 and ṽ2,
respectively. We want a vector q̃g such that q̃gq̃g𝐻 = �̃�1(ṽ1ṽ𝐻1 + ṽ2ṽ𝐻1 + ṽ1ṽ𝐻2 + ṽ2ṽ𝐻2 ). It is easy
to see that q̃g = ±

√︁
�̃�1(ṽ1 + ṽ2) satisfies this requirement and is unique up to the sign. In this

framework, q̃g is already constrained to satisfy q̃gq̃g𝑇 = Q̃
qg. We only need now to estimate if the

sign is positive or negative. Since we are using a pilot sequence, one possible method is to
compare the squared error of the received signal and the predicted received signal using the
channel as in

𝑁𝑠∑︁
𝑖=1
∥G̃s𝑒 (𝑖) − y(𝑖 + �̂�𝑠)∥2

−q̃g
≷
q̃g

𝑁𝑠∑︁
𝑖=1
∥ − G̃s𝑒 (𝑖) − y(𝑖 + �̂�𝑠)∥2, (4.19)

where G̃ is the channel in matrix form obtained from q̃g and �̂�𝑠 is a propagation delay estimate
in samples. In other words, always opt for the sign that produces predictions with smaller sum
of square errors.

4.4 IQI parameter and signal estimation

In this section, we derive the estimator of the IQI coefficients and system parameters. The
derivations below are valid when RF chains share the same IQI coefficients. If the IQI charac-
teristics of the chains are different, then the following procedure is equivalent to restricting the
computations to the subsystem where the coefficients are the same.

Considering (4.1), (4.2), and (4.3), we can show that the covariance and complementary
covariance of y are given by

Ry = 𝚯H𝑒E
{
s𝑒s𝐻𝑒

}
H𝐻
𝑒 𝚯

𝐻 + Rn (4.20)
Qy = 𝚯H𝑒E

{
s𝑒s𝑇𝑒

}
H𝑇
𝑒𝚯

𝑇 +Qn, (4.21)

where Rn and Qn are the covariance and complementary covariance matrices of n, respectively.
The expectations are known, because s is a deterministic pilot sequence
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From qy, we can estimate R̃
qg and Q̃

qg by applying (4.9) and (4.10) with E
{
qyqy𝐻

}
≈ qyqy𝐻 and

E
{
qyqy𝑇

}
≈ qyqy𝑇 . Then we use the channel estimation procedure of Section 4.3 to get an estimate

of the equivalent channel G̃ ≈ 𝚯H𝑒. We can get an estimate of H, conditioned on candidate
values for the IQI parameters (𝜖𝑟 , �̂�𝑟), by computing the least squares solution on Ĥ of

G̃ = �̂�(𝜖𝑟 , �̂�𝑟)
[
Ĥ 0
0 Ĥ∗

]
. (4.22)

This can be done by breaking the equivalent channel estimate into its real and imaginary
components and writing it as a set of matrix equations


G̃𝑟

1
G̃𝑖

1
G̃𝑟

2
G̃𝑖

2

 =


�̂�𝑟
𝐴
−�̂�𝑖

𝐴

�̂�𝑖
𝐴

�̂�𝑟
𝐴

�̂�𝑟
𝐵

�̂�𝑖
𝐵

�̂�𝑖
𝐵
−�̂�𝑟

𝐵


[
Ĥ𝑟

Ĥ𝑖

]
= G̃𝑠 = T(𝜖𝑟 , �̂�𝑟)Ĥ𝑠 (4.23)

where the G̃1 and G̃2 are the first and second 𝑁𝑟 × 𝑁𝑡 sized blocks of G̃, respectively, and
the superscripts indicate real or imaginary parts, i.e., G̃𝑟

1 = ℜ𝔢
{
G̃1

}
, �̂�𝑖

𝐴
= ℑ𝔪

{
�̂�𝐴

}
, and so

on. This can be solved directly with the pseudoinverse of T, which has a simple expression if
�̂�𝐴 = �̂�𝑟I and �̂�𝐵 = 𝛽𝑟I

T† =
1

|�̂�𝑟 |2 + |𝛽𝑟 |2
T𝑇 . (4.24)

This yields the candidate channel estimates

Ĥ(𝜖𝑟 , �̂�𝑟) = Ĥ𝑟 + 𝑗Ĥ𝑖 =
�̂�∗𝑟 G̃1 + 𝛽𝑟G̃∗2
|�̂�𝑟 |2 + |𝛽𝑟 |2

(4.25)

Ĥ𝑒 (𝜖𝑟 , �̂�𝑟) =
[
Ĥ(𝜖𝑟 , �̂�𝑟) 0

0 Ĥ∗(𝜖𝑟 , �̂�𝑟).

]
. (4.26)

Another option which, somewhat surprisingly, yields similar results is to compute the block
diagonal structure preserving least squares solution of

qhLS
𝑒 (𝜖𝑟 , �̂�𝑟) = argmin

qh′𝑒

∥qg − q𝚯(𝜖𝑟 , �̂�𝑟)qh′𝑒∥22,

s.t. qh′𝑒 = 0 if it is a secondary diagonal block element, (4.27)

where qg, in this context, denotes the estimated equivalent channel. This can be computed by
translating the usual minimum norm solution along the null-space of q𝚯(𝜖𝑟 , �̂�𝑟) to zero-out the
desired 2𝑁𝑟𝑁𝑡 elements. This solution does not exist when the null space of q𝚯 does not span the
secondary diagonal blocks. In that case the solution with nonzero left upper block and at most
2𝑁𝑅𝑁𝑇 zeros in total must be used (such as the output of Matlab’s mldivide). Then, omitting
the dependence on 𝜖𝑟 and �̂�𝑟 to avoid heavy notation, Ĥ is the upper left 𝑁𝑟 × 𝑁𝑡 block of
vec−1(qhLS

𝑒 ), and Ĥ𝑒 = Diag(Ĥ, Ĥ∗). The outputs of both methods are numerically very close
and present no noticeable difference in the simulations.
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Figure 4.2. Surface plot of 𝑓 (𝜖𝑟 , 𝜓𝑟) for an 8 × 2 Rayleigh channel at 30 dB SNR and a 1000
sample white Gaussian noise pilot sequence. The red dot shows the position of the optimal
value.

Suppose we also know Rn and Qn with sufficient precision. We thereby have candidate
covariance and complementary covariance matrices of y as functions of 𝜖𝑟 and 𝜓𝑟

R̂y(𝜖𝑟 , 𝜓𝑟) = ĜE
{
s𝑒s𝐻𝑒

}
Ĝ𝐻 + Rn (4.28)

Q̂y(𝜖𝑟 , 𝜓𝑟) = ĜE
{
s𝑒s𝑇𝑒

}
Ĝ𝑇 +Qn (4.29)

Ĝ(𝜖𝑟 , �̂�𝑟) = �̂�(𝜖𝑟 , �̂�𝑟)Ĥ𝑒 (𝜖𝑟 , �̂�𝑟). (4.30)

If the pilot sequence is sufficiently long, the true covariance and complementary covariance
matrices can be estimated with an arbitrary precision. Suppose we have sufficiently accurate
estimates of Ry and Qy, then choose the candidate matrices that minimize the objective function

𝑓 (𝜖𝑟 , �̂�𝑟) = ∥ER(𝜖𝑟 , �̂�𝑟)∥2𝐹 + ∥EQ(𝜖𝑟 , �̂�𝑟)∥2𝐹 (4.31)
= tr{E𝐻

RER} + tr{E𝐻
QEQ}, (4.32)

in which ER = Ry − R̂y and EQ = Qy − Q̂y. And finally (𝜖opt
𝑟 , 𝜓

opt
𝑟 ) = argmin 𝑓 (𝜖𝑟 , �̂�𝑟). The

optimization problem is usually well-behaved and the optima are easy to find assuming the
starting point is within typical values for the IQI parameters. An example of the objective
function shape around the optimal point is shown in Fig. 4.2.

We then use the estimated IQI parameters to get x from y using[
x̃
x̃∗

]
=

[
�̂�𝐴 (𝜖opt

𝑟 , 𝜓
opt
𝑟 ) �̂�𝐵 (𝜖opt

𝑟 , 𝜓
opt
𝑟 )

�̂�∗
𝐵
(𝜖opt
𝑟 , 𝜓

opt
𝑟 ) �̂�∗

𝐴
(𝜖opt
𝑟 , 𝜓

opt
𝑟 )

]−1 [
y
y∗

]
(4.33)

4.5 Analysis of the objective function

In this section, we will explore the characteristics of the objective function to verify if it is
suitable to be optimized with gradient based descent methods. Specifically, we will try to find
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a region in which the function is convex or quasi-convex, and provide an expression for its
gradient.

The initial tries in finding conditions for convexity of 𝑓 were by exploring the eigenvalues of
the Hessian of 𝑓 . Notice that the hessian is a 2×2 matrix, and thus has an closed form expression
for its eigenvalues. These expressions are, however, very long and complicated functions of 𝜖𝑟
and �̂�𝑟 , and extracting information from them proved to be an ineffective approach. Another
approach, which proved to be more insightful, was to assume that the WL channel estimate G̃ is
ideal and then studying this function. This is what we will do in the following derivations.

Assume that we have a perfect WL channel estimate G̃. Then

G̃ = G =
[
G1 G2

]
=

[
𝛼𝑟H 𝛽𝑟H∗

]
. (4.34)

From (4.20) and (4.21), by denoting Rs = E
{
ss𝐻

}
and assuming Qs = E

{
ss𝑇

}
= 0, we can say

that

Ry = G1RsG𝐻
1 +G2RsG𝐻

2 + Rn = |𝛼𝑟 |2HRsH𝐻 + |𝛽𝑟 |2H∗R∗sH
𝑇 + Rn (4.35)

Qy = G1RsG𝑇
2 +G2R∗sG𝑇

1 + Rn = 𝛼𝑟𝛽𝑟

(
HRsH𝐻 +H∗R∗sH

𝑇
)
+Qn. (4.36)

If we define

𝑎 =
𝛼𝑟 |�̂�𝑟 |2 + 𝛽∗𝑟 �̂�𝑟𝛽𝑟
|�̂�𝑟 |2 + |𝛽𝑟 |2

(4.37)

𝑏 =
𝛼∗𝑟 �̂�𝑟𝛽𝑟 + 𝛽𝑟 |𝛽𝑟 |2

|�̂�𝑟 |2 + |𝛽𝑟 |2
, (4.38)

from (4.25) we get

R̂y = |𝑎 |2 HRsH𝐻 + |𝑏 |2 H∗R∗sH
𝑇 + Rn (4.39)

Q̂y = 𝑎𝑏(HRsH𝐻 +H∗R∗sH
𝑇 ) +Qn. (4.40)

The matrix errors are

ER =

(
|𝛼𝑟 |2 − |𝑎 |2

)
HRsH𝐻 +

(
|𝛽𝑟 |2 − |𝑏 |2

)
H∗R∗sH

𝑇 (4.41)

EQ = (𝛼𝑟𝛽𝑟 − 𝑎𝑏)HRsH𝐻 + (𝛼𝑟𝛽𝑟 − 𝑎𝑏)H∗R∗sH
𝑇 (4.42)

Expressing the Frobenius norm of the matrix errors we get

∥ER∥2𝐹 (𝜖𝑟 , �̂�𝑟) =
��|𝛼𝑟 |2 − |𝑎 |2��2 ∥HRsH𝐻 ∥𝐹 +

��|𝛽𝑟 |2 − |𝑏 |2��2 ∥H∗R∗sH𝑇 ∥𝐹
+ 2ℜ𝔢

{(
|𝛼𝑟 |2 − |𝑎 |2

) (
|𝛽𝑟 |2 − |𝑏 |2

)
⟨HRsH𝐻 ,H∗R∗sH

𝑇 ⟩𝐹
}
, (4.43)

where ⟨A,B⟩𝐹 ≡ Tr{AHB} is the Frobenius inner product. The above equation comes from the
property that ∥A + B∥2

𝐹
= ∥A∥2

𝐹
+ ∥B∥2

𝐹
+ 2ℜ𝔢 {⟨A,B⟩𝐹}. Similarly, for EQ

∥EQ∥2𝐹 (𝜖𝑟 , �̂�𝑟) = | |𝛼𝑟𝛽𝑟 − 𝑎𝑏 |
2 ∥HRsH𝐻 ∥𝐹 + |𝛼𝑟𝛽𝑟 − 𝑎𝑏 |2 ∥H∗R∗sH

𝑇 ∥𝐹 (4.44)

+2ℜ𝔢

{
(𝛼𝑟𝛽𝑟 − 𝑎𝑏)2 ⟨HRsH𝐻 ,H∗R∗sH

𝑇 ⟩𝐹
}
. (4.45)



31

Respectively, (4.43) and (4.44) can be simplified to

∥ER∥2𝐹 (𝜖𝑟 , �̂�𝑟) =
��|𝛼𝑟 |2 + |𝛽𝑟 |2 − |𝑎 |2 − |𝑏 |2��2 ∥HRsH𝐻 ∥2𝐹 (4.46)

∥EQ∥2𝐹 (𝜖𝑟 , �̂�𝑟) = |2ℜ𝔢 {𝛼𝑟𝛽𝑟 − 𝑎𝑏}|2 ∥HRsH𝐻 ∥2𝐹 (4.47)

Expanding and simplifying (4.46) yields

∥ER∥2𝐹 (𝜖𝑟 , �̂�𝑟) = |𝛾(𝜖𝑟 , �̂�𝑟) |2∥HRsH𝐻 ∥2𝐹 (4.48)

𝛾(𝜖𝑟 , �̂�𝑟) =
1
2
+ 𝜖

2
𝑟 + 2𝜖𝑟 − 2(𝜖𝑟 + 1) (𝜖𝑟 + 1)

2(𝜖2
𝑟 + 2𝜖𝑟 + 2)

cos(�̂�𝑟 − 𝜓𝑟). (4.49)

Let us further study the 𝛾 function so that we can get some insight on the properties of our
objective function. In Appendix 2 it is shown that 𝛾 is quasiconvex on the domain

Ω =

{
(𝜖𝑟 , �̂�𝑟) : 𝛾(𝜖𝑟 , �̂�𝑟) ≤

(𝜖𝑟 + 1)2
2

, −1 < 𝜖𝑟 < 1,−𝜋
2
< �̂�𝑟 <

𝜋

2

}
. (4.50)

and has a unique minimum at (𝜖𝑟 , 𝜓𝑟). Besides, if we take its second order Taylor expansion
around the (𝜖𝑟 , 𝜓𝑟) point we get

𝛾𝑇 (𝜖𝑟 , �̂�𝑟) =
(𝜖𝑟 − 𝜖𝑟)2 + (𝜖𝑟 + 1)2(�̂�𝑟 − 𝜓𝑟)2

2(𝜖2
𝑟 + 2𝜖𝑟 + 2)

, (4.51)

which is obviously convex on (𝜖𝑟 , �̂�𝑟), with minimum on (𝜖𝑟 , 𝜓𝑟). This indicates that, in the
neighborhood around the optimal point, 𝛾 is quadratic and convex. Taking higher order Taylor
expansions does not produce any particular insightful expression, only adding increasingly
complicated terms.

The results obtained so far show that using only ∥ER∥2𝐹 (𝜖𝑟 , �̂�𝑟) should already be enough
to achieve convergence to the true values of the IQI coefficients. However, experience from
the simulations shows that incorporating the ∥EQ∥2𝐹 (𝜖𝑟 , �̂�𝑟) massively improves convergence,
requiring shorter sequence lengths and not being as sensitive to the SNR. We will only present
the expression for 2ℜ𝔢 {𝛼𝑟𝛽𝑟 − 𝑎𝑏}, from that we’ll assume intuitively (thus, without proof)
that it has a minimum at the true value of the IQI coefficients and is also quasiconvex (and it is
very likely also convex) on the neighborhood of its optimum. The expression 2ℜ𝔢 {𝛼𝑟𝛽𝑟 − 𝑎𝑏}
can be written as

2ℜ𝔢 {𝛼𝑟𝛽𝑟 − 𝑎𝑏} =
−𝜖𝑟 (𝜖𝑟 + 2) (3𝜖2

𝑟 + 6𝜖𝑟 + 4) + 2(𝜖𝑟 + 1) (𝜖2
𝑟 + 𝜖𝑟) (𝜖𝑟 + 2) cos(�̂�𝑟 − 𝜓𝑟) + 𝜖𝑟 (𝜖𝑟 + 2) (𝜖2

𝑟 + 2𝜖𝑟 + 2)
2(𝜖2

𝑟 + 2𝜖𝑟 + 2)2
,

(4.52)

which is considerably more complicated to analyse in the same fashion that we did with 𝛾,
because it is a higher order polynomial. However, to confirm that there exists an optimum at the
desired point, it can be shown that 2ℜ𝔢 {𝛼𝑟𝛽𝑟 − 𝑎𝑏} = 0 if 𝜖𝑟 = 𝜖𝑟 and �̂�𝑟 = 𝜓𝑟 .

4.6 Numerical results

The simulation setup used to evaluate the effectiveness of the proposed method is a single anchor
position estimation problem using the first samples of a 5G NR random OFDM waveform as a
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Table 4.1. Fundamental simulation parameters.
Channel Model Single LOS path

Path gain 0 dB
Subcarrier Spacing 60 kHz
Resource Blocks 52

Cyclic Prefix Extended
Modulation QPSK

Carrier Frequency 4 GHz
Tx Antennas 1
Rx Antennas 8

Channel Sample Density inf
DoA Algorithm MUSIC

Ranging Algorithm Matched filter detector

Figure 4.3. Transmitter and receiver geometry.

pilot sequence. The used waveform is just one example to demonstrate the performance. Many
other reasonable pilot sequences could be used in a straightforward manner. The simulations use
the resources offered by the Matlab 5G NR package, and the fundamental simulation parameters
are described in Table 4.1. A 5G NR waveform with 52 resource blocks and 60 kHz subcarrier
spacing has a 37.44 MHz bandwidth. The transmitter (Tx) and receiver (Rx) are coplanar with
geometry and angles as defined in Fig. 4.3. In all results the receiver is located at (0 m, 0 m)
and the transmitter at (40 m, 10 m) with an angle of 𝜙0 = 𝜋/2 rad. The 𝜙0 angle matters even in
single antenna scenario, because the antenna elements are modeled according to Section 7.3 of
[41] and are not isotropic elements. The objective function is optimized using the Nelder-Mead
simplex search algorithm as defined by Lagarias et al. [42].

Signal detection and synchronization is conducted by finding the maximum value of the
output of a matched filter. This procedure ensures coarse timing and symbol synchronization if
the waveform is properly oversampled. Oversampling ensures that adjacent samples are highly
correlated, thus making the channel estimation and IQI computations more robust to minor
synchronization errors. We assume known transmission time and perfectly synchronized clocks
between Tx and Rx as a way of isolating the impacts of IQI on ranging accuracy.

The equivalent channel estimation and the IQI parameter estimation procedures as described
consider that the received signal samples y(𝑖) are detected at the correct instant, i.e., at the true
first signal sample. If this is satisfied, then the correct relation between the received sample y(𝑖)



33

Figure 4.4. Position RMSE grid sweep for the IQI affected signal, signal compensated signal
with our method, and signal compensated with the blind estimator at 30 dB SNR.

and the transmitted sample of the pilot sequence s(𝑖) can be established.
In general, the signal may not be detected at the perfect time instant, because in a practical

situation it is difficult to determine the optimum sampling time and avoiding such a strict syn-
chronization requirement simplifies the procedure. The equations for the maximum likelihood
covariance and complementary covariance matrices of y, will now incorporate this error in their
calculation. The effects of this error are not noticeable at all in the root mean square error
(RMSE) of the position estimates, to the point where results of the simulations with imperfect
synchronization are indistinguishable from the perfectly synchronized case by simply visualizing
the plots.

We consider that all RF chains share the same IQI coefficients in the simulations, this allows
us to visualize the impact of the phase and amplitude IQI parameters in the MSE of the position
estimates. We first present an IQI parameter grid sweep over (𝜖𝑟 , 𝜓𝑟) in Figs. 4.4 and 4.5 for
SNR values of 30 dB and 10 dB, respectively. The number of iterations per grid point is 50,
the pilot sequence has 50 samples before interpolation with rate 16. The signal sampling rate is
originally set by the OFDM modulator as a function of the bandwidth. We linearly interpolate
the samples to increase the time resolution of the detector up to values that are acceptable in a
ranging context, this is analogous to an oversampling operation. The method is very successful
at eliminating the impact of IQI on positioning accuracy. By analysing Figs. 4.4 and 4.5 we can
see that the compensated and the original signals without IQI produce positioning estimates of
almost identical RMSE, i.e., the compensated RMSE is close to the plane tangent to the IQI
RMSE surface at the (𝜖𝑟 , 𝜓𝑟) = (0, 0) point and parallel to the 𝜖𝑟𝜓𝑟-plane. This represents a
major improvement in comparison to the RMSE of the positioning estimates extracted from the
IQI corrupted signal. We also observe that the performance is almost the same at both SNR
values, which is an interesting phenomenon and will be addressed below.

As a reference point, to verify the relative performance of the method presented in this section,
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Figure 4.5. Position RMSE grid sweep for the IQI affected signal, signal compensated signal
with our method, and signal compensated with the blind estimator at 10 dB SNR.

we compare it to a blind maximum likelihood estimator for the IQI parameters assuming Gaussian
received signal, equivalent to the estimator described in [15], restated in (3.10) and (3.11). This
blind estimator is essentially the one in [15] adapted to conform with the IQI model used here.
The details of this process are contained in Appendix 3.

In the described simulation scenario at 30 dB SNR, our method outperformed the blind
estimator by an average 24.56 cm reduction in position RMSE. For the same scenario at 10 dB
SNR, our method outperforms the blind estimator by an average reduction of 18.23 cm.

If all RF chains share IQI coefficients, one may substitute
∑𝑁−1
𝑛=0 𝑦𝑘 (𝑛)𝑦∗𝑘 (𝑛) by

mean

(
diag

(
𝑁−1∑︁
𝑛=0

y𝑘 (𝑛)y𝐻𝑘 (𝑛)
))
,

and similarly for
∑𝑁−1
𝑛=0 𝑦𝑘 (𝑛)𝑦𝑘 (𝑛) by using a transpose instead of a hermitian conjugate. This

concludes the derivation of the blind estimator, we will now resume the analysis of the numerical
results.

In Fig. 4.6 we assess the impacts of the SNR and the transmitted pilot sequence length on the
estimated position MSE. We present the results as the MSE ratio in dB, i.e., the difference of the
MSE logarithms of a particular case and the clean case. This keeps the values within a convenient
range. Notice that once the pilot sequence is long enough (around 600 samples in this particular
example) our method is capable of perfectly compensating the IQI impacts on the position
estimate at all tested SNR points. For negative (in dB) SNR, the position estimate without IQI
is already very inaccurate and IQI does not significantly worsen the estimates in this case, thus
the values to the left approach 0. Another interesting effect is that the uncompensated position
estimates somewhat improve for larger sequence length, this is largely because more samples
allow a better pseudospectrum estimate in the MUSIC algorithm, used for DoA estimation. A
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Figure 4.6. Difference between the base 10 logarithms of the position estimate MSE of a
particular case and the case without IQI (Clean) as a function of the transmitted sequence
length and SNR. IQI parameters set to 𝜖𝑟 = −0.2 and 𝜓𝑟 = 30◦. The plots show from left to
right: the uncompensated case (IQI), the case with the compensated signal using our method
(Compensated), and the case where compensation is done with a blind estimator (Blind).

longer pilot sequence also makes the matched filter include more samples, reducing the chance
of spurious detections.

In Fig. 4.7 we present a comparison between the estimated position RMSE values achieved
by our method (Compensated), the blind estimator (Blind), the uncompensated signal (IQI),
and the case where no IQI exists (Clean). In this figure, the IQI coefficients are kept constant
at 𝜖𝑟 = −0.4 and 𝜓𝑟 = 30◦ and the results are averaged over 50 iterations. The pilot sequence
length is also kept constant at 800 samples (50 samples interpolated at a rate of 16). We observe
that our method almost completely eliminates the IQI for all SNR values, i.e., the Compensated
and Clean curves basically overlap. Additionally, the proposed method clearly presents a major
performance improvement when compared to the blind estimator or the uncompensated case.

It is also noticeable in Fig. 4.7 that the RMSE saturates at high SNR instead of improving
abitrarily. This can be attributed to finite time resolution due to sampling rate, finite DoA angle
resolution in the MUSIC algorithm, suboptimal pilot sequence choice, because the used wave-
form is not optimized for the application, and possibly short pilot sequence length. Exploring
this SNR performance saturation in more detail is left for future work.

Comparing computational complexity and execution time between both methods, we have
timed them on a simulation of the transmission of 𝑁𝑠 = 800 samples, 𝑁𝑟 = 8 receiver antennas,
𝑁𝑡 = 1 transmit antennas, over a complex Rayleigh channel with Var{ℎ𝑖 𝑗 } = 1, averaged over
500 trials. The proposed method takes on average (excluding channel estimation) 22.363 ms of
simulation time in a Linux server in an Intel Xeon Gold 6126 CPU, while the blind estimation
takes 0.808 ms on the same hardware. Our method comes at the disadvantage of requiring
channel estimation of a channel in widely-linear form. The proposed method, including channel
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Figure 4.7. Position estimate RMSE as a function of the SNR with fixed pilot sequence length.

estimation, took on average 1.170 seconds to compute. Naturally, the channel estimate can be
used for other procedures that would also require a channel estimate. We want to emphasize
that the presented times are computer simulation times used just for relative comparisons, and
the actual computing time on dedicated hardware would be much faster. Furthermore, the IQI
coefficients only need to be estimated once (or periodically at relatively long periods), so even if
the IQI estimation takes long enough to render the latest positioning data obsolete, the obtained
IQI estimates can now be reused for future transmissions.
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5 5G NEW RADIO COMPLIANT IQI COMPENSATION

This chapter we will address some approaches to perform IQI parameter estimation and com-
pensation within OFDM and 5G NR environments. First we will contemplate the transmission
of entire pilot frames or subframes, i.e., when the entire transmitted frame is known. This is in
general not the most resource economic approach since it requires spending entire subframes
almost exclusively for IQI compensation. Nevertheless it has some justification, mainly because
IQI parameters do not vary significantly over time and the estimates may be reliably used for
a long time. Therefore, it also does not impact the throughput of the data, due to the relative
sparsity of the pilot subframes.

As a second possible approach, we may use some of the reference signals specified by the
5G standard [43], such as the demodulation reference signal (DM-RS) and the phase tracking
reference signal (PT-RS), to continuously estimate the IQI coefficients. The advantage of using
standard defined reference signals is that they are frequently and reliably transmitted during
normal operation of a 5G data link, thus no extra implementation-specific pilot frames for IQI
compensation need to be scheduled

5.1 Estimating over pilot slots

Consider the transmission of an OFDM signal adhering to the 5G NR standard. Consider the
case of a single transmission layer, then a time-invariant channel can be modeled as

h(𝜔) = Hphy(𝜔)p =


ℎ0(𝜔)
ℎ1(𝜔)
...

ℎ𝑁𝑅−1(𝜔)

 , (5.1)

where p is the 𝑁𝑡 × 1 analog precoding vector that maps transmission layers to physical antenna
elements, Hphy(𝜔) is the frequency dependent physical 𝑁𝑟 × 𝑁𝑡 channel matrix, where 𝑁𝑟 and
𝑁𝑡 are the number of receive and transmit antennas respectively. Consider also that all antennas
share IQI coefficients, this is justified by noticing that any antennas that do not share IQI may
simply be excluded from the computations. Following the reasoning on [12], we assume that
the cyclic prefix length is at least as long as the channel impulse response, to avoid inter-symbol
interference (ISI). Under perfect timing and frequency synchronization, disregarding RF front-
end imperfections, and under no inter-carrier interference (ICI), the𝑚th OFDM received symbol
at the 𝑘th subcarrier can be expressed as

x𝑘 (𝑚) = h𝑘 𝑠𝑘 (𝑚) + n𝑘 (𝑚), 𝑘 ∈ {−𝐾, . . . , 𝐾}, (5.2)

where 𝑠𝑘 (𝑚) is the 𝑚th transmitted symbol at the 𝑘th subcarrier, and 𝑘 = 0 indicates the DC
subcarrier, with 𝑘 increasing in frequency from −𝐾 to 𝐾 . The received symbol x𝑘 (𝑚) has
𝑁𝑟 elements, each one associated with one of the receive antennas. We can treat each of the
subcarriers as orthogonal, static subchannels.

Let us now incorporate the effects of receiver IQI. Since the Fourier transform of the conjugate
F {𝑥∗(𝑡)}(𝜔) is equal to F {𝑥(𝑡)}∗(−𝜔), the effects of IQI can be expressed in the OFDM
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subcarriers following the expression

y𝑘 (𝑚) =
[
𝚯𝐴 𝚯𝐵

] [
x𝑘 (𝑚)
x∗−𝑘 (𝑚)

]
(5.3)

=
[
𝚯𝐴 𝚯𝐵

] [
h𝑘 0
0 h∗−𝑘

] [
𝑠𝑘 (𝑚)
𝑠∗−𝑘 (𝑚)

]
+

[
𝚯𝐴 𝚯𝐵

] [
n𝑘 (𝑚)
n∗−𝑘 (𝑚)

]
(5.4)

=


𝑦𝑘,0(𝑚)
𝑦𝑘,1(𝑚)

...

𝑦𝑘,𝑁𝑟−1(𝑚)

 =


𝑔1
𝑘,0 𝑔2

𝑘,0
𝑔1
𝑘,1 𝑔2

𝑘,1
...

...

𝑔1
𝑘,𝑁𝑟−1 𝑔2

𝑘,𝑁𝑟−1


[
𝑠𝑘 (𝑚)
𝑠∗−𝑘 (𝑚)

]
+ w𝑘 (𝑚), (5.5)

where w𝑘 (𝑚) = 𝚯𝐴n𝑘 (𝑚) + 𝚯𝐵n∗−𝑘 (𝑚) is the IQI affected noise at the 𝑘th subcarrier and 𝑚th
OFDM symbol. Suppose that we receive 𝑁𝑠 OFDM pilot symbols. Then we can compute a
WL-LS estimate of the subchannel of the 𝑘th subcarrier and 𝑙th antenna

[
�̃�1
𝑘,𝑙

�̃�2
𝑘,𝑙

]
=


𝑠𝑘,𝑙 (0) 𝑠∗−𝑘,𝑙 (0)
𝑠𝑘,𝑙 (1) 𝑠∗−𝑘,𝑙 (1)
...

...

𝑠𝑘,𝑙 (𝑁𝑠 − 1) 𝑠∗−𝑘,𝑙 (𝑁𝑠 − 1)


† 

𝑦𝑘,𝑙 (0)
𝑦𝑘,𝑙 (1)
...

𝑦𝑘,𝑙 (𝑁𝑠 − 1)

 , (5.6)

where † denotes the Moore-Penrose pseudoinverse. We compute WL channel estimates over all
subcarriers which contain known transmitted symbols, we will refer to those estimates as WL
channel estimates or as equivalent channel estimates, interchangeably.

Let 𝑁𝑐 = 2𝐾 + 1 denote the number of OFDM subcarriers, which is a direct consequence
of the defined numerology. We now select only a fraction 𝑁′𝑐 = ⌈𝜈𝑁𝑐⌉ of the subcarriers,
with 𝜈 ∈ (0, 1), which we will use to estimate the IQI parameters. Different criteria may
be used to specify the subset of used subcarriers, for example: one may compute a linear
subchannel LS estimate Ĥ𝑘 for each subcarrier, the 𝑁′𝑐 subcarriers with higher sum of squared
magnitudes Ĥ𝐻

𝑘
Ĥ𝑘 are then selected. Other possibility would be to select the subchannels with

highest
∑𝑁𝑟−1
𝑙=0 |𝑔

1
𝑘,𝑙
|2 + |𝑔2

𝑘,𝑙
|2, or subchannel-antenna pairs (𝑘, 𝑙) with highest |𝑔1

𝑘,𝑙
|2 + |𝑔2

𝑘,𝑙
|2,

this is justified in the sense that, if one wants to avoid computing another set of channel
estimates (as would happen when computing linear channel estimates), Ĥ𝐻

𝑘
Ĥ𝑘 can be very

roughly approximated by this method. One might state, however, that linear channel estimates are
going to be computed anyway for the purposes of equalization. This would be a valid argument,
except that any linear channel estimate computed before compensating for IQI would include
errors provoked by it, leading to inaccurate channel estimates in the worst cases. Therefore,
it is important to first address the IQI issue before attempting to equalize the channel. Hence,
in case we are not using all available pilot subcarriers, the idea is to select the subcarriers
which experience the best SNR due to channel gains. On section 5.6, we study the case with
subchannel-antenna pairs based on the highest |𝑔1

𝑘,𝑙
|2+ |𝑔2

𝑘,𝑙
|2 criterion, in which case the channel

matrices reduce to scalar channel coefficients.
With the set of selected subcarriers S★ computed, we now proceed directly to the estimation

of IQI parameters. We vectorize the WL estimated channel matrix

qg𝑘 = vec(G̃𝑘 ) = vec
©«

�̃�1
𝑘,0 �̃�2

𝑘,0
�̃�1
𝑘,1 �̃�2

𝑘,1
...

...

�̃�1
𝑘,𝑁𝑟−1 �̃�2

𝑘,𝑁𝑟−1


ª®®®®¬
, (5.7)
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and compute the channel estimates from the equivalent WL channel conditioned on a given
value for the IQI coefficients. This can be done by computing from G̃𝑘 and G̃−𝑘 the least squares
solution for ĥ𝑘 and ĥ−𝑘 of[

G̃𝑘

G̃−𝑘

]
=

[
g̃1,𝑘 g̃2,𝑘
g̃1,−𝑘 g̃2,−𝑘

]
=

[
�̂�𝐴ĥ𝑘 �̂�𝐵ĥ∗−𝑘
�̂�𝐴ĥ−𝑘 �̂�𝐵ĥ∗

𝑘

]
, (5.8)

then breaking (5.8) into its real and imaginary components and writing it as a set of matrix
equations 

g̃𝑟1,𝑘
g̃𝑖1,𝑘
g̃𝑟2,𝑘
g̃𝑖2,𝑘
g̃𝑟1,−𝑘
g̃𝑖1,−𝑘
g̃𝑟2,−𝑘
g̃𝑖2,−𝑘


=



�̂�𝑟
𝐴
−�̂�𝑖

𝐴
0 0

�̂�𝑖
𝐴

�̂�𝑟
𝐴

0 0
0 0 �̂�𝑟

𝐵
�̂�𝑖
𝐵

0 0 �̂�𝑖
𝐵
−�̂�𝑟

𝐵

0 0 �̂�𝑟
𝐴
−�̂�𝑖

𝐴

0 0 �̂�𝑖
𝐴

�̂�𝑟
𝐴

�̂�𝑟
𝐵

�̂�𝑖
𝐵

0 0
�̂�𝑖
𝐵
−�̂�𝑟

𝐵
0 0




ĥ𝑟
𝑘

ĥ𝑖
𝑘

ĥ𝑟−𝑘
ĥ𝑖−𝑘

 ⇒ g𝑠𝑘 = Tĥ𝑠𝑘 , (5.9)

where the superscripts indicate the real or imaginary parts, i.e., g̃𝑟1,𝑘 = ℜ𝔢
{
g̃1,𝑘

}
, �̂�𝑖

𝐴
=

ℑ𝔪
{
�̂�𝐴

}
, and so on. This can be solved directly with the pseudoinverse of T, which has

a simple expression if �̂�𝐴 = �̂�𝑟I and �̂�𝐵 = 𝛽𝑟I

T† =
1

|�̂�𝑟 |2 + |𝛽𝑟 |2
T𝑇 . (5.10)

Which leads to the channel estimates

ĥ𝑘 (𝜖𝑟 , �̂�𝑟) = ĥ𝑟𝑘 + 𝑗 ĥ
𝑖
𝑘 =

�̂�∗𝑟 g̃1,𝑘 + 𝛽𝑟 g̃∗2,−𝑘
|�̂�𝑟 |2 + |𝛽𝑟 |2

(5.11)

ĥ−𝑘 (𝜖𝑟 , �̂�𝑟) = ĥ𝑟−𝑘 + 𝑗 ĥ
𝑖
−𝑘 =

�̂�∗𝑟 g̃1,−𝑘 + 𝛽𝑟 g̃∗2,𝑘
|�̂�𝑟 |2 + |𝛽𝑟 |2

(5.12)

Ĥ𝑒,𝑘 (𝜖𝑟 , �̂�𝑟) =
[
ĥ𝑘 (𝜖𝑟 , �̂�𝑟) 0

0 ĥ∗−𝑘 (𝜖𝑟 , �̂�𝑟)

]
. (5.13)

Now we define

G′𝑘 (𝜖𝑟 , �̂�𝑟) = �̂�(𝜖𝑟 , �̂�𝑟)Ĥ𝑒,𝑘 (𝜖𝑟 , �̂�𝑟), (5.14)

and choose an objective function to optimize over the candidate IQI coefficients (𝜖𝑟 , �̂�𝑟). Min-
imizing the sum of the Frobenius norms of the covariance and complementary covariance
matrices of y𝑘 is not a reliable approach when dealing with just a few time domain symbols,
because the covariance matrices cannot be accurately estimated unless we have many samples.
However, if we have sufficient time domain samples, using the covariance matrices is an option.
Another approach, which is more computationally costly but capitalizes on the available more
precise symbol synchronization (compared to the previous positioning scenario which only had
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a matched filter detector for detecting the beginning of signal reception) and pilot symbols, is to
minimize the sum of the square errors between received samples and expected samples:

(𝜖opt
𝑟 , 𝜓

opt
𝑟 ) = argmin

𝜖𝑟 ,�̂�𝑟

𝑓 (𝜖𝑟 , �̂�𝑟) (5.15)

𝑓 (𝜖𝑟 , �̂�𝑟) =
∑︁
𝑘∈S★

𝑁𝑠−1∑︁
𝑚=0
∥e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)∥2 (5.16)

e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟) = y𝑘 (𝑚) −G′𝑘 (𝜖𝑟 , �̂�𝑟)s𝑒,𝑘 (𝑚) (5.17)

The drawbacks of the described objective function are related with the computational load
associated with it and its vulnerability to low SNR. Naturally, as more subcarriers and symbols
are included, the better the estimates become, at the cost of more computations needed per
iteration of the optimization algorithm due to the cost of computing the objective function itself.
Numerical experimentation shows that the Nelder-Mead simplex search optimization methods
can reliably solve this optimization problem when the equivalent channel estimates are accurate.

There is also the option of selecting subsets of antennas within each subcarrier, so we exclude
the antennas that experience the worse channel gains. We may then select only subchannels
and antennas with higher channel gain to strike a balance between quality of the IQI estimates
and computational cost if computing resources are scarce. As previously mentioned, this is the
option considered on Section 5.6, where subchannel-antenna pairs with highest |𝑔1

𝑘,𝑙
|2 + |𝑔2

𝑘,𝑙
|2

are selected. For this, the objective function is modified such that (5.17) is no longer a vector,
but a scalar corresponding to the 𝑙th entry of e𝑘,𝑚, and the summation over 𝑘 in (5.16) is now
performed over the selected (𝑘, 𝑙) pairs.

5.2 Analysis of the objective function

In this section, we will explore the characteristics of the objective function to verify if it is suitable
to be optimized with gradient based descent methods, similar to what was done in Section 4.5.
Again, we will try to find a region in which the function is convex or quasi-convex, and provide
an expression for its gradient. This is done similarly to what was developed in Section 4.5, by
showing quasiconvexity assuming perfect WL channel estimates, and by computing the gradient
without any ideality assumptions.

Assume G̃𝑘 and G̃−𝑘 are perfect WL channel estimates. Then

G̃𝑘 =
[
𝛼𝑟h𝑘 𝛽𝑟h∗−𝑘

]
(5.18)

The linear channel estimates from (5.11) and (5.12) then become

ĥ𝑘 (𝜖𝑟 , �̂�𝑟) =
�̂�∗𝑟𝛼𝑟 + 𝛽𝑟𝛽∗𝑟
|�̂�𝑟 |2 + |𝛽𝑟 |2

h𝑘 (5.19)

ĥ−𝑘 (𝜖𝑟 , �̂�𝑟) =
�̂�∗𝑟𝛼𝑟 + 𝛽𝑟𝛽∗𝑟
|�̂�𝑟 |2 + |𝛽𝑟 |2

h−𝑘 (5.20)

The “hat” variables, i.e., 𝜖𝑟 and �̂�𝑟 , are the candidate IQI coefficients, while the same variables
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without a hat indicate the ground truth values. The error e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟) becomes

e𝑘,𝑚 =
[
𝛼𝑟h𝑘 − 𝛼𝑟 ĥ𝑘 𝛽𝑟h∗−𝑘 − 𝛽𝑟 ĥ

∗
−𝑘

] [
𝑠𝑘 (𝑚)
𝑠∗−𝑘 (𝑚)

]
+ n𝑘 (𝑚) (5.21)

=

[(
𝛼𝑟 − �̂�𝑟 �̂�

∗
𝑟𝛼𝑟+𝛽𝑟 𝛽∗𝑟
|�̂�𝑟 |2+|𝛽𝑟 |2

)
h𝑘

(
𝛽𝑟 − 𝛽𝑟 �̂�𝑟𝛼

∗
𝑟+𝛽∗𝑟 𝛽𝑟

|�̂�𝑟 |2+|𝛽𝑟 |2

)
h∗−𝑘

] [
𝑠𝑘 (𝑚)
𝑠∗−𝑘 (𝑚)

]
+ n𝑘 (𝑚) (5.22)

where n𝑘 (𝑚) is IQI affected noise, the dependencies on 𝜖𝑟 and �̂�𝑟 have been omitted for notation
cleanliness. We then have

∥e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)∥2 =

����𝛼𝑟 − �̂�𝑟 �̂�∗𝑟𝛼𝑟 + 𝛽𝑟𝛽∗𝑟|�̂�𝑟 |2 + |𝛽𝑟 |2

����2 ∥h𝑘 𝑠𝑘 (𝑚)∥2 + ����𝛽𝑟 − 𝛽𝑟 �̂�𝑟𝛼∗𝑟 + 𝛽∗𝑟 𝛽𝑟|�̂�𝑟 |2 + |𝛽𝑟 |2

����2 ∥h∗−𝑘 𝑠∗−𝑘 (𝑚)∥2
+ ∥n𝑘 (𝑚)∥2 + cross terms (5.23)

Assume that 𝑠𝑘 (𝑚), 𝑠−𝑘 (𝑚), and n𝑘 (𝑚) are all zero mean, statistically independent, ergodic
random processes. Assume also that 𝑁𝑠 is large enough such that

∑𝑁𝑠−1
𝑚=0 ∥e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)∥

2 =

𝑁𝑠E𝑚
{
∥e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)∥2

}
, in this case the cross terms in (5.23) are averaged out by ergodicity in

𝑓 . If we further assume that the summation in 𝑘 always includes both 𝑘 and −𝑘 , then 𝑓 can be
further simplified to

𝑓 (𝜖𝑟 , �̂�𝑟) = 𝛾(𝜖𝑟 , �̂�𝑟) · 𝑁𝑠
𝐾∑︁
𝑘=0
E𝑚

{
∥h𝑘 𝑠𝑘 (𝑚)∥2 + ∥h∗−𝑘 𝑠

∗
−𝑘 (𝑚)∥

2} (5.24)

𝛾𝑘 (𝜖𝑟 , �̂�𝑟) =
����𝛼𝑟 − �̂�𝑟 �̂�∗𝑟𝛼𝑟 + 𝛽𝑟𝛽∗𝑟|�̂�𝑟 |2 + |𝛽𝑟 |2

����2 + ����𝛽𝑟 − 𝛽𝑟 �̂�𝑟𝛼∗𝑟 + 𝛽∗𝑟 𝛽𝑟|�̂�𝑟 |2 + |𝛽𝑟 |2

����2 . (5.25)

Yielding the important result that 𝑓 (𝜖𝑟 , �̂�𝑟) ∝ 𝛾(𝜖𝑟 , �̂�𝑟), under the given assumptions. In
Appendix 2 we show that 𝛾 is a quasiconvex function and in Appendix 4 we derive the gradient
for 𝑓 (𝜖𝑟 , �̂�𝑟) as defined in (5.16), without any assumptions on the ideality of the WL channel
estimates.

5.3 Low SNR or signal-less IQI estimation

Additionally, in situations with no signal transmitted or a transmission under very low SNR, if
the noise statistics are known and stationary (or approximately stationary during transmission
time), one may try to estimate the IQI coefficients directly from them by assuming the noise
is proper. This is more easily done and more robust by taking the waveform statistics directly,
instead of performing OFDM demodulation. Say that the IQI affected noise variance 𝑟𝑛,𝑙 and
complementary variance 𝑞𝑛,𝑙 are known to a sufficient precision in antenna 𝑙, then by assuming
that E {𝑤𝑙𝑤𝑙} = 0 we can state that

n(𝑚) = 𝚯𝐴w(𝑚) +𝚯𝐵w∗(𝑚) ⇒ 𝑛𝑙 (𝑚) = 𝛼𝑟𝑤𝑙 (𝑚) + 𝛽𝑟𝑤∗𝑙 (𝑚) (5.26)

𝑟𝑛,𝑙 = E
{
𝑛𝑙𝑛
∗
𝑙

}
= 𝜎2

𝑤,𝑙

1 + 𝑚2
𝑟

2
(5.27)

𝑞𝑛,𝑙 = E {𝑛𝑙𝑛𝑙} = 𝜎2
𝑤,𝑙

(
1 − 𝑚2

𝑟

2
− 𝑗𝑚𝑟 sin𝜓𝑟

)
, (5.28)
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we may search for the tuple (�̂�2
𝑤,𝑙
, �̂�𝑟 , �̂�𝑟) that minimizes the sum of the square norms of

the differences between the sample variance and sample complementary covariance and their
expected values given (�̂�2

𝑤,𝑙
, �̂�𝑟 , �̂�𝑟), in a non-linear least squares problem:

𝐸𝑛 (�̂�2
𝑤,𝑙 , �̂�𝑟 , �̂�𝑟) =

𝑁𝑟−1∑︁
𝑙=0

����𝑟𝑛,𝑙 − �̂�2
𝑤,𝑙

1 + �̂�2
𝑟

2

����2 + ����𝑞𝑛,𝑙 − �̂�2
𝑤,𝑙

(
1 − �̂�2

𝑟

2
− 𝑗 �̂�𝑟 sin �̂�𝑟

)����2 . (5.29)

The above problem is a nonlinear optimization problem which is not as straightforward to solve
compared to linear least squares. However, we have all the methods for solving non-linear least
squares problems at our disposal. One possible heuristic method is to break it in 𝑁𝑟 subproblems,
each associated with one of the terms in the summation, and average the solutions. In that case,
dimensionality issues are greatly alleviated and solving the subproblems can be done by many
methods such as: multiple start gradient methods, direct search such as Nelder-Mead simplex
methods, or by discretizing the search space and applying exhaustive search heuristics such as
tabu-search, simulated annealing, or even naive grid-search. Of course we may also use these
methods to tackle the main problem directly. Also, in the case that all receive antennas are
expected to have the same noise variance, �̂�2

𝑛,𝑙
can be substituted for �̂�2

𝑛 , which greatly simplifies
the optimization procedure.

A weighted combination of both the noise-based and the signal-based objective functions
may even be considered, with the signal-based objective being more heavily weighted than the
noise-based when the estimated SNR is high, and vice-versa. This would lead to a more general
procedure which works well under all kinds of SNR conditions.

5.4 Using the demodulation and phase tracking reference signals to estimate IQI

The following parameters are used for defining the physical resource allocation for the DM-RS
[43]:

• 𝑘 indicates the subcarrier index.

• 𝑙0 is the index of the first DM-RS OFDM symbol (𝑙0 is always 0 in mapping type B).

• 𝑙𝑑 is, for mapping type A, the number of OFDM symbols between the first OFDM symbol
of the slot and the last OFDM symbol of the allocated PUSCH resources. For mapping
type B it is equal to the duration of scheduled PUSCH resources. If intra-slot frequency
hopping is used, then 𝑙𝑑 is the duration per hop, regardless of mapping type.

• the higher-layer parameter maxLength in DMRS-UplinkConfig specifies whether double-
symbol DM-RS may be used.

• the higher-layer parameter dmrs-AdditionalPosition defines the maximum number of ad-
ditional DM-RS symbols to be transmitted within the slot.

The precise definitions, particular details, and contexts of each parameter are described in [43].
The used set of used subcarriers KDMRS then follows the rule

𝑘 ∈ KDMRS if 𝑘 =

{
4𝑛 + 2𝑘′ + Δ , Configuration type 1
6𝑛 + 𝑘′ + Δ , Configuration type 2

; 𝑘′ = 0, 1; 𝑛 = 0, 1, . . . (5.30)
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For Δ, we refer the reader to Tables 6.4.1.1.3-1 and 6.4.1.1.3-2 in [43]. For our purposes it
suffices to state that Δ ∈ {0, 1} in configuration type 1.

As we have derived in the previous section, knowledge of transmitted signal in both the 𝑘th
subcarrier and its frequency domain mirror image, the −𝑘th subcarrier, is needed to perform
LS WL channel estimation in the standard fashion. We then rely on the DM-RS occupied
subcarriers having some symmetry with respect to frequency domain mirroring. The OFDM
baseband waveform for all channels except the physical random access channel (PRACH) and
except for the remote interference management reference signal (RIM-RS) is given by

𝑠
(𝑝,𝜇)
𝑙
(𝑡) =

{
𝑠
(𝑝,𝜇)
𝑙
(𝑡) 𝑡

𝜇

start,𝑙 ≤ 𝑡 < 𝑡
𝜇

start,𝑙 + 𝑇
𝜇

symb,𝑙
0 otherwise

(5.31)

𝑠
(𝑝,𝜇)
𝑙
(𝑡) =

𝑁
size,𝜇
grid,𝑥𝑁

RB
sc −1∑︁

𝑘=0
𝑎
(𝑝,𝜇)
𝑘,𝑙

𝑒
𝑗2𝜋

(
𝑘+𝑘𝜇0 −𝑁

size,𝜇
grid,𝑥𝑁

RB
sc /2

)
Δ 𝑓

(
𝑡−𝑁𝜇

cp,𝑙𝑇𝑐−𝑡
𝜇

start,𝑙

)
, (5.32)

where 𝑝 denotes the antenna port, 𝜇 the subcarrier spacing configuration, 𝑘𝜇0 is a frequency do-
main offset that depends on the values within the higher-layer parameter list scs-SpecificCarrierList
(this list is specifically used in the context of carrier aggregation and contains subcarrier spacing
parameters), Δ 𝑓 is the subcarrier spacing, 𝑁RB

sc is the number of subcarriers per resource blocks
(always 12), 𝑁size,𝜇

grid,𝑥 is the size of the resource grid (i.e., the number of resource blocks). For
the DM-RS, 𝑎 (𝑝,𝜇)

𝑘,𝑙
is computed from the intermediary DM-RS symbols �̃� (𝑝,𝜇)

𝑘,𝑙
, these in turn are

mapped to 𝑎 (𝑝,𝜇)
𝑘,𝑙

with a precoding matrix and an amplitude scaling factor 𝛽DMRS.
We need to select the DM-RS symbols which have a known signal transmitted at its frequency

domain mirrored subcarrier, i.e., we use the set of DM-RS subcarriers K𝑢 that satisfy

K𝑢 =

{
𝑘 : −

(
𝑘 + 𝑘𝜇0 − 𝑁

size,𝜇
grid,𝑥𝑁

RB
sc /2

)
∩

(
𝑘 + 𝑘𝜇0 − 𝑁

size,𝜇
grid,𝑥𝑁

RB
sc /2

)
≠ ∅, 𝑘 ∈ KDMRS

}
. (5.33)

To make this clearer, we present an example. Consider the case of transmission over the PUSCH
with a single resource block (RB), no carrier aggregation, DM-RS configuration type 1, over
the first antenna port. In this case we have 𝑁size,𝜇

grid,𝑥𝑁
RB
sc = 12 subcarriers, 𝑘𝜇0 = 0, and Δ = 0,

therefore the set of subcarriers occupied by DM-RS is KDMRS = {0, 2, 4, 6, 8, 10, 12}, which
are related to the frequency bands: −6Δ 𝑓 , −5Δ 𝑓 , ..., 5Δ 𝑓 , respectively. When the received
OFDM waveform is complex conjugated, the DM-RS original carriers get mapped to their
frequency mirror images in the fashion described by Table 5.1. This means that if we want
to perform a procedure similar as the one defined in the previous section using the DM-RS, it
would require us to include only subcarriers in K𝑢, and using only the OFDM symbols which
are allocated to DM-RS. Because of these restrictions, including additional DM-RS symbols
per slot with the dmrs-AdditionalPosition parameter is beneficial to estimation performance.

The PT-RS may also be used to estimate the IQI coefficients. Using exclusively the PT-
RS elements may not be a viable approach due to its low density in the frequency resources.
According to [43] Section 6.4.1.2.2, PT-RS frequency density in the uplink is governed by
the parameter 𝐾𝑃𝑇−𝑅𝑆 ∈ {2, 4}, which indicates whether PT-RS is present every 2 or 4 RBs,
respectively. In the time domain however, it is possibly much denser than DM-RS, occupying
either every available symbol, 1 every 2 symbols, or 1 every 4 symbols not already allocated to
DM-RS. The time density of the PT-RS signal is governed mainly by the 𝐿𝑃𝑇−𝑅𝑆 ∈ {1, 2, 4}
parameter. The specifics concerning the definition and application of the parameters 𝐾𝑃𝑇−𝑅𝑆
and 𝐿𝑃𝑇−𝑅𝑆 is detailed in TS 38.214 [44]. In conclusion, it is reasonable to expect the inclusion
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Table 5.1. Mapping of original DM-RS occupied subcarriers to the frequency mirrored sub-
carriers for PUSCH transmission with a single resource block, no carrier aggregation, DM-RS
configuration type 1, over the first antenna port

𝑘 Freq. Symbol Conjugate
0 −6Δ 𝑓 𝑎

(𝑝,𝜇)
0,𝑙 0

2 −4Δ 𝑓 𝑎
(𝑝,𝜇)
2,𝑙

(
𝑎
(𝑝,𝜇)
10,𝑙

)∗
4 −2Δ 𝑓 𝑎

(𝑝,𝜇)
4,𝑙

(
𝑎
(𝑝,𝜇)
8,𝑙

)∗
6 0 𝑎

(𝑝,𝜇)
6,𝑙

(
𝑎
(𝑝,𝜇)
6,𝑙

)∗
8 2Δ 𝑓 𝑎

(𝑝,𝜇)
8,𝑙

(
𝑎
(𝑝,𝜇)
4,𝑙

)∗
10 4Δ 𝑓 𝑎

(𝑝,𝜇)
10,𝑙

(
𝑎
(𝑝,𝜇)
2,𝑙

)∗
of the PT-RS for IQI coefficients estimation to be effectively used exclusively to augment the
performance of the DM-RS based estimator.

5.5 Analysis on subcarrier spacing and channel coherence time

It is intuitive that using more pilot slots to estimate IQI should produce lower MSE estimates.
However, more training slots requires a longer transmission window in the time domain, which
may become problematic if the channel has a short coherence time. A fast varying channel
requires repeated channel estimation even within a single frame, this is expected to deteriorate
IQI coefficient estimation performance. According to the 5G standard [43], a frame has 10 ms
duration, which is divided into 10 subframes of 1 ms, which are in turn split into 2𝜇 slots
according to Table 4.3.2-1 of [43] (for normal cyclic prefix), where 𝜇 is the selected subcarrier
spacing numerology. For example, at 𝜇 = 4 (240 kHz subcarrier spacing), 160 slots can be fit
into a 10 ms frame.

Wang et al. [45] report a typical suburban LOS 5G vehicular channel scenario at 3.5 GHz
with a receiver moving at 70 km/h relative to the transmitter to have a mean coherence time
of about 24.9 ms. He et al. [46] present an approximate expression and simulated coherence
times in a high speed rail radio channel for a 500 MHz bandwidth mmWave signal centered
at 25.25 GHz. It is reported in their work that the average coherence time in the simulations
approximately obeys the expression 𝑇 = 5 · 10−3𝑣, where 𝑣 is the transmitter relative speed in
m/s and 𝑇 is the average coherence time in milliseconds. For a train moving in straight line
through an urban environment at speeds of 500 km/h and 120 km/h, they report coherence times
of 1.4 ms and 5.9 ms respectively. For a curved trajectory with radius of curvature between
400 m and 10 km and a train moving at 100 km/h, the reported coherence time is 7.2 ms.

We may also use the well established theoretical expressions to approximate a reasonable
range of 5G-related coherence times. The coherence time is approximately the inverse of the
Doppler spread [47]

𝑇𝑐 ≈
1
𝐵𝐷

=
𝑐

𝑣 𝑓𝑐
, (5.34)

where 𝑐 is the speed of light, 𝑣 is the relative velocity between transmitter and receiver, and 𝑓𝑐
is the center frequency of the emitter. As explained by [48], mmWave applications are not only
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focused on local area network (LAN) and personal area network (PAN) contexts, but extend even
to urban microcellular and picocellular deployments. In a typical scenario at 60 GHz carrier
frequency and 60 km/h mobile velocity, the coherence time is approximately 0.3 ms, yielding
around a third of a 5G subframe. With a third of a subframe, not even a single slot can be
transmitted at subcarrier spacing index 𝜇 = 0. If we increase the subcarrier spacing to 𝜇 = 6,
then 21 slots can be transmitted in the same timeframe. This leads us to the logical conclusion
that higher subcarrier spacing configurations allow IQI coefficient estimation that is more robust
to channel time variation by exploiting the increased OFDM symbol rate, transmitting more
slots in approximately the same channel conditions.

If the IQI estimation relies on a static channel assumption, then the channel coherence time
is a limiting factor for maximum pilot sequence length. Adapting the estimation method to
consider time-varying channels should lead to performance improvement. A possible technique
could be roughly described as using a sliding window in the time domain and using the pilot
symbols within this window to compute a channel estimate. The sliding window can be shifted
with a non-unit stride length, i.e. sliding by moving it by more than one symbol. The channel
estimate at a particular instant can be some combination of the channel estimates obtained from
windows that included the symbol transmitted at that instant. Many variations of this problem
can be formulated and tackling channel time variation within IQI estimation is a worthwhile
research direction. The impact of using multiple channel estimates to account for time-varying
channels in IQI coefficient estimation is left for future work.

5.6 Numerical Results

In this section we will present the results of some Monte Carlo simulations designed to assess
the efficacy of the methods introduced in this chapter. The first set of simulations considers the
case of fully known pilot slots and computes the MSE of the estimated IQI coefficients. They
also present normalized mean squared error (NMSE) values defined as

NMSE =

∑𝑁−1
𝑛=0 |𝑥𝑛 − 𝑥𝑛 |2∑𝑁−1

𝑛=0 |𝑥𝑛 |2
, (5.35)

where 𝑥𝑛 and 𝑥𝑛 are the true and estimated values of observation 𝑛, respectively. In the
simulations, the true value is kept constant throughout the Monte Carlo trials, the Normalized
MSE then can be expressed as

NMSE =

1
𝑁

∑𝑁−1
𝑛=0 |𝑥 − 𝑥𝑛 |2

|𝑥 |2
, (5.36)

with the MSE being now normalized by the magnitude of 𝑥.
We will first observe the effects of training sequence length in the accuracy of the IQI

coefficient estimates. We will study transmission in an uplink context, using the PUSCH. We
use 5G-like pilot slots of random quadriphase phase shift keying (QPSK) modulated cyclic
prefix (CP)-OFDM subcarriers, normal cyclic prefix, 4 RBs, 15 kHz subcarrier spacing, 4
receive antennas, and 2 transmit antennas. However, because the transmission scheme is set
to non-codebook with no precoding (i.e., identity precoding), and only one PUSCH layer is
active, only one of the transmit antennas is effectively transmitting. By 5G-like slots it is
meant that, while the slots observe general frame structure parameters of the 5G standard such
as the specified subcarrier spacing, number of symbols per slot, number of subcarriers per
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resource block, etc., they do not include hybrid automatic repeat request (HARQ) features or the
reference signals, i.e. they are purely QPSK random data with 5G-compliant number of time-
domain OFDM symbols and number of subcarriers. This approach was chosen for simplicity
of implementation, specially because, when evaluating IQI coefficient estimation performance,
all the data integrity related features of 5G HARQ such as cyclic redundancy check (CRC),
forward error correction, and retransmission, as well as all the reference signal’s sequence
generation and resource allocation details are not relevant to the estimation process. Standard
5G transmission will be included in the throughput simulations which will be presented right
after the IQI estimation MSE figures. All the curves in the figures are averaged over 1000 Monte
Carlo trials unless stated otherwise. Transmission happens through a CDL-A channel as defined
in Table 7.7.1-1 of TR 38.901 [41], the channel is set at to a delay spread of 30 ns and is constant
throughout the whole transmission, i.e., the maximum Doppler shift is 0 Hz.

In the presented figures, the MSE and Normalized MSE are presented as a function of the
fraction of the total available subcarriers used for IQI estimation. As suggested by the theory
in the previous section, we select the subcarrier and antenna pairs that experience the highest
|𝑔1
𝑘,𝑙
|2 + |𝑔2

𝑘,𝑙
|2 computed from the WL LS channel estimates and then minimize the objective

stated in (5.16). We start with Fig. 5.1, which considers 0 dB SNR with all receive antennas
sharing IQI parameters fixed at 𝜖𝑟 = 0.3 and 𝜓𝑟 = 20◦ and varies the slot quantity and fraction
of used subcarriers. We first see that using more subcarriers for IQI estimation produces better
estimation performance until roughly about half of the “best” subcarriers. It is also clear that
the MSE decreases drastically when the quantity of training slots is increased. The benefits of
using more slots are intuitive, it improves the quality of channel estimates and helps average out
the objective function, thus making the optimization procedure more likely to converge close to
the actual IQI coefficient values. By analysing Fig. 5.2 it is also evident that using only one
slot, i.e., 14 OFDM symbols, produces relatively bad estimates with square errors of almost the
same order of magnitude as the estimated coefficients themselves.

In Figs. 5.3 and 5.4 similar results are presented, but for -10 dB SNR instead. The observed
results are as expected: the overall idea of the simulations at 0 dB is roughly the same but now
with slightly higher MSE values. We see once again that using only one slot for estimation is
not viable, specially at this SNR value. The MSE values for 1 training slot are now higher than
the parameter’s square values, as can be seen in Fig. 5.4. It is also noticeable that using 10
slots and roughly half of the best subcarriers already produces reasonably valued estimates with
Normalized MSE around 10−2.

We will now observe the effects of SNR on the IQI coefficient estimates. These simulations
consider the same conditions as the previous ones, but always use 100 pilot slots for estimation,
varying the SNR instead. Figures 5.5 and 5.6 show the MSE and Normalized MSE, respectively,
for IQI estimation with 100 slots and different SNR values. One notable fact that can be observed
from both of the aforementioned figures is that MSE can be almost arbitrarily improved at 100
pilot slots by improving the SNR. This means that, if the training sequence is long enough
and if the SNR is high enough, the IQI coefficients can be estimated almost perfectly with the
described method. Estimation performance is notably very poor in low SNR conditions such as
-30 dB, particularly because the objective function is signal-based. In this particular situation,
the data indicates that abandoning the signal based objective function and using an objective
function based on the statistics of the noise and interference, such as the one proposed in (5.29),
might be more effective.

In the next simulation, we will assess the impacts of the number of slots and SNR on the MSE
of the IQI parameters using the 5G compliant DM-RS based IQI estimation proposed in Section
5.4. The transmitted signal has 4 RBs with 15 kHz subcarrier spacing, QPSK symbols, CP-
OFDM modulation with normal cyclic prefix. The signal is transmitted through a static TDL-A
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Figure 5.1. MSE of the amplitude (left) and phase (right) IQI coefficients as a function of the
fraction of subcarriers used for estimation, CDL-A channel at 0 dB SNR. Curves varying in
quantity of training slots are presented according to the legend.

[41] channel with 30 ns delay spread, 4 receive antennas and 2 transmit antennas (but only one
PUSCH layer and no precoding, so again only one antenna is effectively transmitting). Timing
estimation is assumed perfect. Each data point is averaged over 48 runs. The IQI parameters
are set to 𝜖𝑟 = 0.3 and 𝜓𝑟 = 20◦. In Fig. 5.7 we present the MSE of the 𝜖𝑟 and 𝜓𝑟 estimates
using the method proposed herein, and we also present the MSE of the blind estimator from [15]
that was used in Section 4.6. Analysing the results, it is clear that the blind estimator produces
consistent estimates with MSE of around 10−4, not showing much variation regarding the SNR or
number of slots. This is expected behaviour, because as long as the received signal has a proper
complex Gaussian distribution, i.e., it is complex Gaussian with null complementary covariance
Qy = E

{
yy𝑇

}
= 0, the blind estimator is going to produce acceptable estimates. Since the noise

is assumed to be proper, white, and Gaussian, decreasing the SNR should not deteriorate the
quality of the blind estimates in any way. One clear drawback of the blind estimator is that,
in the case that any IQI exists in the transmitter, the received signal is no longer proper, i.e.
Qy ≠ 0, and the blind estimator is no longer effective. This shows a clear advantage in terms of
the versatility and flexibility of our method in comparison to other existing techniques.

Observing the upper row of Fig. 5.7, we draw the intuitive conclusion: the IQI estimates
become increasingly better as the SNR and the number of training slots increase. With 40
training slots, the blind estimator is outperformed in the whole observed SNR range. If we
consider SNR> 0 dB, then more than 30 training slots seems to be sufficient to achieve better
results than the blind estimator. One of the main ideas that can be extracted from this figure is
that, the proposed method is capable of getting almost perfect estimates if the conditions allow
it, but if the SNR and available number of slots (due to channel coherence time, for example)
are not high enough, then a simpler blind estimator can outperform it.

For the last simulation of this section, with results in Fig. 5.8, we consider the impacts of IQI
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Figure 5.2. Normalized MSE of the amplitude (left) and phase (right) IQI coefficients as a
function of the fraction of subcarriers used for estimation, CDL-A channel at 0 dB SNR.

on the throughput of 5G NR PUSCH transmission. The transmitted signal configuration and
channel are the same as the last simulation and the throughput is computed as the percentage
of data correctly decoded from a total of 500 transmitted frames. Incorrectly received blocks
are detected in standard fashion through CRC checksums. HARQ retransmissions are disabled.
The radio channel (not including the IQI effects) is assumed perfectly known for the purposes of
equalization only, and it is equalized with a MMSE equalizer. Equalization is performed after IQI
compensation, thus the equalizer computes the noise variance estimate from IQI compensated
noise samples. After equalization, the soft symbols are computed and decoded with the uplink
shared channel (UL-SCH) transport block processing chain defined in Section 6.2 of TS 38.212
[49]. The target code rate is set to 193/1024, maximum low density parity check (LDPC) Belief
Propagation iterations is set to 12. The used IQI coefficients are 𝜖𝑟 = −0.25 and 𝜓𝑟 = 35◦.

The results of Fig. 5.8 are not averaged over many iterations, instead they are computed from
a single transmission of many frames and the averaging is done over time. A subset of the first
transmitted slots is used to compute estimates of the IQI coefficients from the DM-RS symbols
as described in Sections 5.1 and 5.4. The number of slots used for estimation in each particular
curve is indicated by the figure’s legend, where Clean and IQI indicate the cases with no IQI
and with fully uncompensated IQI, respectively. First one must pay attention to the impact on
the throughput caused by IQI, effectively shifting the throughput curve by more than 1 dB to
the right. We can conclude from this that uncompensated heavy IQI has a noticeable effect on
the throughput. One can see that the curves related to 5 and 10 training slots already produce
a significant improvement in the throughput when compared to the uncompensated IQI curve.
IQI compensation using 50 training slots was able to almost completely eliminate all of IQI’s
impact on the throughput at all SNR values. Yet, one of the more interesting curves is the
one related to 2 training slots. It is clear that 2 slots are not enough to accurately estimate the
IQI coefficients at around -10 dB SNR. In fact, the “compensation” actually deteriorates the
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Figure 5.3. MSE of the amplitude (left) and phase (right) IQI coefficients as a function of the
fraction of subcarriers used for estimation, CDL-A channel at -10 dB SNR.

throughput performance at those conditions. Nonetheless, once once the SNR reaches values
around -9.5 dB, estimating with 2 slots starts to produce improvement. This is an evident direct
consequence of the lower noise allowing for better estimates of the IQI coefficients and, thus,
throughput improvement by means of IQI compensation.

From the presented results in this section we can state that we have achieved an effective
pilot-based method for IQI coefficient estimation and compensation that conforms with the 5G
standard by effectively exploiting its reference signals. In Chapter 7 we will also compare the
performance of the method here introduced with other OFDM based IQI estimation procedures.
From these comparisons we will be able to extract the advantages and disadvantages of each
procedure and also judge their overall effectiveness.
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Figure 5.4. Normalized MSE of the amplitude (left) and phase (right) IQI coefficients as a
function of the fraction of subcarriers used for estimation, CDL-A channel at -10 dB SNR.

Figure 5.5. MSE of the amplitude (left) and phase (right) IQI coefficients as a function of the
fraction of subcarriers used for estimation, CDL-A channel with 100 pilot slots for estimation.
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Figure 5.6. Normalized MSE of the amplitude (left) and phase (right) IQI coefficients as a
function of the fraction of subcarriers used for estimation, CDL-A channel with 100 pilot slots
for estimation.

Figure 5.7. IQI parameter estimates’ MSE as a function of the SNR and the number of training
slots. The top row presents the results achieved by the proposed 5G compliant IQI estimation
procedure, and the bottom row presents the results from a blind estimator.
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Figure 5.8. 5G NR PUSCH simulation assessing the effects of IQI on throughput. A total of
500 10 ms frames are transmitted over a TDL-A channel with 30 ns delay spread, 4 receive and
2 transmit antennas. The resource grid has 4 resource blocks, QPSK symbols, and is CP-OFDM
modulated with 15 kHz subcarrier spacing, normal cyclic prefix. The IQI coefficients are fixed
to 𝜖𝑟 = −0.25 and 𝜓𝑟 = 35◦. The different curves indicate different number of slots used for
IQI coefficient estimation, as well as the uncompensated and no IQI cases (IQI and Clean,
respectively).
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6 JOINT TRANSMITTER AND RECEIVER IQI ESTIMATION

In this chapter, we will extend the proposed method to perform joint estimation of the IQI
parameters in the transmitter and receiver. This is a considerably more complicated problem
with significantly less bibliography compared to the problem of estimating Rx imbalance only.
For example, from the many IQI compensation schemes mentioned in Chapter 3, only three of
them considered Tx and Rx IQ imbalance simultaneously [16] [26] [27]. From those methods,
Zhang et al. [26] considers the knowledge of some hard to know parameters and [16] proposes
a solution with hardware loopback. As mentioned in Chapter 3, both of these approaches have
some complications associated with them in the sense that they either require information that
is hard to obtain, or they require specific hardware modifications or design choices to tackle IQI
compensation. The method that is more similar to the one proposed here is the one in [27], that
relies exclusively on the transmitted and received information to extract the IQI coefficients. Let
us now detail the proposed joint Tx/Rx IQI estimation and compensation procedure.

6.1 System model

The model that will be used in this chapter is similar to the model in Chapter 5 and is based on
the analysis done in [12]. Consider the theoretical case of 𝑁𝑐 transmitter RF chains with 𝑁𝑐 × 1
baseband equivalent output s𝑇 (𝑡). Because this is the output of an IQ imbalanced RF chain, we
can express it as

s𝑇 (𝑡) = 𝚯𝐴𝑇s(𝑡) +𝚯𝐵𝑇s∗(𝑡), (6.1)

where s(𝑡) is the ideal baseband equivalent output of the RF chains, and 𝚯𝐴𝑇 and 𝚯𝐵𝑇 are the
Tx IQI matrices, diagonal matrices of coefficients defined in (2.30) and (2.31), respectively.
This signal is analog precoded with the 𝑁𝑡 × 𝑁𝑐 precoding matrix P and transmitted, where 𝑁𝑡
is the number of transmit antennas. From [12], assume the cyclic prefix length is at least as
long as the channel impulse response length to avoid ISI, assume also that timing and frequency
synchronization at the receiver are ideal, then the 𝑚th OFDM symbol at the 𝑘th subcarrier can
be written as

y𝑘 (𝑚) =
[
𝚯𝐴𝑅 𝚯𝐵𝑅

] [
x𝑘 (𝑚)
x∗
𝑘
(𝑚)

]
(6.2)

=
[
𝚯𝐴𝑅 𝚯𝐵𝑅

] [
H𝑘 (𝚯𝐴𝑇s𝑘 (𝑚) +𝚯𝐵𝑇s∗−𝑘 (𝑚))

H∗−𝑘 (𝚯
∗
𝐴𝑇

s∗−𝑘 (𝑚) +𝚯
∗
𝐵𝑇

s−𝑘 (𝑚))

]
+ (𝚯𝐴𝑅n𝑘 (𝑚) +𝚯𝐵𝑅n∗−𝑘 (𝑚))

(6.3)

=
[
𝚯𝐴𝑅 𝚯𝐵𝑅

] [
H𝑘 0
0 H∗−𝑘

] [
𝚯𝐴𝑇 𝚯𝐵𝑇

𝚯∗
𝐵𝑇

𝚯∗
𝐴𝑇

] [
s𝑘 (𝑚)
s∗−𝑘 (𝑚)

]
+ w𝑘 (𝑚), (6.4)

where the 𝑁𝑟 × 1 vector x𝑘 (𝑚) denotes the ideal received signal for the 𝑚th OFDM symbol and
𝑘th subcarrier at the 𝑁𝑟 receive antennas, 𝚯𝐴𝑅 and 𝚯𝐴𝐵 denote the receiver IQI matrices, H𝑘

denotes the channel matrix at the 𝑘th subcarrier (including all analog precoding and beamforming
processing), and n𝑘 (𝑚) is the noise at the 𝑚th OFDM symbol and 𝑘th subcarrier. We use n(𝑚)
to model any noise and interference experienced by the system, it is reasonable to assume that
𝑛𝑘 (𝑚) may be modeled as AWGN and that it is added before IQI at the LNA, since the input
stages are the ones that most deteriorate the receiver noise figure. The combination of receiver



54

IQI, channel, and transmitter IQI can be modeled as WL channel


𝑦𝑘,0(𝑚)
𝑦𝑘,1(𝑚)

...

𝑦𝑘,𝑁𝑟−1(𝑚)

 =


g1
𝑘,0 g2

𝑘,0
g1
𝑘,1 g2

𝑘,1
...

...

g1
𝑘,𝑁𝑟−1 g2

𝑘,𝑁𝑟−1


[

s𝑘 (𝑚)
s∗−𝑘 (𝑚)

]
+ w𝑘 (𝑚) (6.5)

=
[
G1
𝑘

G2
𝑘

]
s𝑒,𝑘 (𝑚) + w𝑘 (𝑚) (6.6)

= G𝑘s𝑒,𝑘 (𝑚) + w𝑘 (𝑚), (6.7)

where g𝑖
𝑘,𝑙

is a 1 × 𝑁𝑐 vector. We call G𝑘 the effective channel at the 𝑘th subcarrier, or the 𝑘th
effective subchannel.

Consider now a LS WL channel estimate computed in the standard way. Suppose we receive
𝑁𝑠 symbols and that the channel remains static during the whole transmission, i.e., the channel
coherence time is much larger than the transmission time, then the subchannel of the 𝑘th
subcarrier at the 𝑙th antenna is estimated as a widely linear operator in the same manner as in
the previous chapter, applying (5.6). From (6.4) we know that

G1
𝑘 = 𝚯𝐴𝑅H𝑘𝚯𝐴𝑇 +𝚯𝐵𝑅H∗−𝑘𝚯

∗
𝐵𝑇 (6.8)

G2
𝑘 = 𝚯𝐵𝑅H∗−𝑘𝚯

∗
𝐴𝑇 +𝚯𝐴𝑅H𝑘𝚯𝐵𝑇 . (6.9)

Assume that the transmitter RF chains all have the same IQI, assume the same thing for the
receiver, i.e., 𝚯𝐴𝑇 = 𝛼𝑡I, 𝚯𝐵𝑇 = 𝛽𝑡I, 𝚯𝐴𝑅 = 𝛼𝑟I, 𝚯𝐵𝑅 = 𝛽𝑟I, then we can write (6.8) and (6.9)
as

G1
𝑘 = 𝛼𝑟𝛼𝑡H𝑘 + 𝛽𝑟𝛽∗𝑡 H∗−𝑘 (6.10)

G2
𝑘 = 𝛽𝑟𝛼

∗
𝑡 H∗−𝑘 + 𝛼𝑟𝛽𝑡H𝑘 . (6.11)

The equivalent channel G−𝑘 also depends on the values of H𝑘 and H−𝑘 , so we may set up a
system of matrix equations using these expressions

G1
𝑘
= 𝛼𝑟𝛼𝑡H𝑘 + 𝛽𝑟𝛽∗𝑡 H∗−𝑘

G2
𝑘
= 𝛽𝑟𝛼

∗
𝑡 H∗−𝑘 + 𝛼𝑟𝛽𝑡H𝑘

G1
−𝑘 = 𝛼𝑟𝛼𝑡H−𝑘 + 𝛽𝑟𝛽

∗
𝑡 H∗𝑘

G2
−𝑘 = 𝛽𝑟𝛼

∗
𝑡 H∗𝑘 + 𝛼𝑟𝛽𝑡H−𝑘

. (6.12)

Renaming 𝑎 = 𝛼𝑟𝛼𝑡 , 𝑏 = 𝛽𝑟𝛽
∗
𝑡 , 𝑐 = 𝛽𝑟𝛼

∗
𝑡 , and 𝑑 = 𝛼𝑟𝛽𝑡 , and breaking down into real and

imaginary parts we may write

G𝑟
1,𝑘

G𝑖
1,𝑘

G𝑟
2,𝑘

G𝑖
2,𝑘

G𝑟
1,−𝑘

G𝑖
1,−𝑘

G𝑟
2,−𝑘

G𝑖
2,−𝑘


=

©«



𝑎𝑟 −𝑎𝑖 𝑏𝑟 𝑏𝑖

𝑎𝑖 𝑎𝑟 𝑏𝑖 −𝑏𝑟
𝑑𝑟 −𝑑𝑖 𝑐𝑟 𝑐𝑖

𝑑𝑖 𝑑𝑟 𝑐𝑖 −𝑐𝑟
𝑏𝑟 𝑏𝑖 𝑎𝑟 −𝑎𝑖
𝑏𝑖 −𝑏𝑟 𝑎𝑖 𝑎𝑟

𝑐𝑟 𝑐𝑖 𝑑𝑟 −𝑑𝑖
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H𝑟
𝑘

H𝑖
𝑘

H𝑟
−𝑘

H𝑖
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 ⇒ G𝑠
𝑘 = TH𝑠

𝑘 , (6.13)
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where ⊗ is the Kronecker product, and the 𝑟 and 𝑖 superscripts respectively denote real and
imaginary parts, e.g., 𝑎𝑟 = ℜ𝔢 {𝑎}, H𝑖

𝑘
= ℑ𝔪 {H𝑘 }, etc. The general expression equivalent to

(6.13) for any Tx and Rx IQI coefficients may be obtained by removing the Kronecker product
and substituting the IQI coefficients for the corresponding IQI matrices in the definitions of 𝑎,
𝑏, 𝑐, and 𝑑.

6.2 IQI estimation

Suppose that we have WL channel estimates G̃𝑘 and G̃−𝑘 , then we may compute channel
estimates Ĥ𝑘 and Ĥ−𝑘 conditioned on candidate values of Tx and Rx IQI parameters 𝜖𝑡 , �̂�𝑡 , 𝜖𝑟 ,
and �̂�𝑟 , by substituting the true channels for the estimates in (6.13), using the conditioned values
of IQI parameters to set up T̂, and applying the pseudoinverse

Ĥ𝑠
𝑘 = T̂†(𝜖𝑡 , �̂�𝑡 , 𝜖𝑟 , �̂�𝑟)G̃𝑠

𝑘 . (6.14)

This pseudoinverse has an closed-form expression, but it is generally too complicated to be more
useful than computing it numerically. We can now define the estimated channels conditioned
on the IQI parameters as

Ĥ𝑘 = Ĥ𝑟
𝑘 + 𝑗Ĥ

𝑖
𝑘 (6.15)

Ĥ−𝑘 = Ĥ𝑟
−𝑘 + 𝑗Ĥ

𝑖
−𝑘 . (6.16)

Define the objective function over the candidate IQI parameters

𝑓 (𝜖𝑡 , �̂�𝑡 , 𝜖𝑟 , �̂�𝑟) =
∑︁
𝑘∈K∗

𝑁𝑠−1∑︁
𝑚=0

y𝑘 (𝑚) − [
�̂�𝐴𝑅 �̂�𝐵𝑅

] [
Ĥ𝑘 0
0 Ĥ∗−𝑘

] [
�̂�𝐴𝑇 �̂�𝐵𝑇

�̂�∗
𝐵𝑇

�̂�∗
𝐴𝑇

] [
s𝑘 (𝑚)
s∗−𝑘 (𝑚)

]2

,

(6.17)
whereK∗ ⊆ K is a subset of the subcarriers selected according to some criterion. We state that
the Tx and Rx IQI coefficients can be reliably estimated by minimizing 𝑓 .

In the case that the receiver has many RF chains with different IQI coefficients, the estimates
of the transmitter IQI coefficients become coupled by the objective functions associated with
each set of receiver RF chains. Let 𝑁𝑟𝑐 denote the number of receiver RF chains with distinct
IQI coefficients, denote their IQI parameters by 𝜖 𝑝𝑟 and 𝜓𝑝𝑟 , with 𝑝 = 0, 1, . . . , 𝑁𝑟𝑐 −1, then they
have objective functions such as (6.17). We can define a “total” objective function by coupling
all the 𝑁𝑟𝑐 objectives

𝑓𝑇𝑜𝑡𝑎𝑙

(
𝜖𝑡 , �̂�𝑡 , 𝜖

0
𝑟 , �̂�

0
𝑟 , . . . , 𝜖

𝑁𝑟
𝑐−1

𝑟 , �̂�
𝑁𝑟
𝑐−1

𝑟

)
=

𝑁𝑟
𝑐−1∑︁
𝑝=0

𝑓𝑝
(
𝜖𝑡 , �̂�𝑡 , 𝜖

𝑝
𝑟 , �̂�

𝑝
𝑟

)
. (6.18)

6.3 Discussion on optimization issues

The objective function in (6.17) is not well behaved like the ones in Chapter 5. Simulations
indicate that there exist many local optima, some of them are even far from the ground truth
parameter values. One of the more complicated aspects is that, even for high SNR and long
sequence lengths, the final solution is very sensitive to the starting point of the optimizer. If
the optimizer is initialized at the true parameter values, provided that the SNR is high and that
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the pilot sequence is long, then the optimization algorithm converges almost exactly to the true
values (not necessarily at the true values themselves, because the objective function relies on
the gathered data and estimated equivalent channel). If the optimizer is initialized to a random
valid point in the search space, or even a default starting point such as (0, 0), then it is very likely
that the optimizer will converge to a local optima that is reasonably far from the true parameter
values.

For the case with multiple Rx IQI coefficients in (6.18), with the additional sets of cofficients
come all the issues associated with increasing the dimension of the search space. However, it is
reasonable to expect this coupled objective function to actually improve convergence and reduce
the MSE of the estimates. This can happen because even if two specific combinations of Tx
parameters and Rx parameters produce similar 𝑓𝑝 values, it is unlikely that they also produce
similar 𝑓𝑞 values (for 𝑝 ≠ 𝑞), assuming of course that the IQI coefficients between RF chains are
sufficiently different. A simpler, but less optimal, option is to optimize all 𝑓𝑝 independently and
then take the average of the Tx IQI parameter values from the 𝑁𝑟𝑐 solutions. There is a trade-off
involving the quality of the solution and the time spent in finding a solution, for example, for 2
Rx IQI values and 1 Tx IQI value, the computational cost for solving the fully coupled problem
may be almost the same as solving 2 independent subproblems and taking the average of the
Tx IQI parameters, because the complexity of a pair of 2-dimensional optimization problems
is more or less comparable to the complexity of a single 4-dimensional optimization problem.
However if we have many more Rx IQI values, i.e., 𝑁𝑟𝑐 ≫ 1 (values larger than 4 may already
qualitatively satisfy this property), then the dimension of the joint optimization problem is
2𝑁𝑟𝑐 + 1, experiencing exponential growth of the search space, while solving the subproblems
requires solving 𝑁𝑟𝑐 4-dimensional problems. In this case it may be much more efficient to solve
the subproblems and average out the Tx IQI solution, because the joint problem may even be
infeasible under some time and computational constraints.

We will not perform a more detailed analysis of the proposed objective functions in this work.
The main reason for this is that this objective function is much more complicated than the ones
in previous chapters, specially due to the pseudoinverse of T̂. Numerical experimentation can
show that it is clearly not well behaved, i.e., it is not convex or quasi-convex.

6.4 Optimizing the objective function

The performance of the proposed method for joint estimation of Tx and Rx IQI coefficients
is a matter of both the conditions (pilot sequence length and SNR) as well as of non-convex
optimization itself. In this section, we will present some methods and heuristics that have
been shown to be useful in finding the minimum of the objective function, focusing mainly
on the function defined in (6.17). The first issue one encounters in the optimization process
is the choice of algorithms that will be used. Because of the difficulty in deriving a gradient
for this objective function, gradient-less methods like the Nelder-Mead (NM) seem like an
attractive option. However, due to the non-convexity of the objective, the NM algorithm will
not necessarily converge to the neighborhood of the true parameter values. This leads to the
second issue in the optimization process: setting the starting point. Practical observation shows
that performing NM search when initializing to 0 leads to massively incorrect estimates, thus
we need to find a procedure to better initialize the algorithm. One technique that has led to
effective results is running a few iterations of simulated annealing (SA) with short reannealing
periods to get a very rough estimate of the optimal point and initialize the NM search with it.
Depending on the pilot sequence length and SNR, the NM algorithm will converge to points in
the neighborhood of the ground truth parameter values (the NM algorithm does not necessarily
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converge to local optima or stationary points [50]).
Using SA+NM leads to approximate estimates which, in many situations, can still be improved

by a large margin. We can then explore some techniques to refine the SA+NM results so that
the quality of the IQI estimates is not limited by the efficacy of the optimization process, but by
practical factors such as the SNR and pilot sequence length. To improve the optimization results,
we can perform particle swarm (PS) optimization [51] [52] [53] constrained to a neighborhood
of the SA+NM output, and from the PS output we can perform NM search again. This
Constrained PS+NM can be iterated many times to refine the quality of the IQI estimates, where
the constraints restrain the neighborhood to be smaller each time. After many attempts, we
arrived at the following procedure, which will be used in the numerical simulations:

• Simulated annealing initialized at 0 with initial temperature of 50, maximum stall iterations
of 30, and reannealing after every 3 new points are accepted;

• Applying Nelder-Mead to the output of the SA;

• Applying constrained Particle Swarm tot the output of NM, with bounds set to 𝜖𝑁𝑀1
𝑟,𝑡 ±0.01

and𝜓𝑁𝑀1
𝑟,𝑡 ±1◦, where the NM1 superscript indicates the output of the first NM optimization

process;

• Another round of NM initialized at the output of the PS optimization;

• Another round of constrained PS but with tighter constrains around the output of the
last NM optimization, bound set to 𝜖𝑁𝑀2

𝑟,𝑡 ± 0.002 and 𝜓𝑁𝑀2
𝑟,𝑡 ± 0.2◦., we where the NM2

superscript indicates the output of the second NM optimization process;

• A final round of NM to clean up the results of the last particle swarm.

Naturally, many methods for problems of this kind exist, these are broadly classified as global
optimization algorithms, and one may experiment with the multiple available options. The main
focus should always be to let SNR, pilot sequence length, and number of subcarriers be the main
bottleneck that limits the quality of IQI parameter estimates, and never suboptimality.

6.5 IQI compensation

With the IQI parameter estimates in hand, it remains for us to compensate the effects of IQI. For
the transmitter IQI, we know that[

s𝑇 (𝑡)
s∗
𝑇
(𝑡)

]
=

[
𝚯𝐴𝑇 𝚯𝐵𝑇

𝚯∗
𝐵𝑇

𝚯∗
𝐴𝑇

] [
s(𝑡)
s∗(𝑡)

]
(6.19)

We can use the block matrix inversion formula[
A B
C D

]−1
=

[
S−1 −S−1BD−1

−D−1CS−1 D−1 + D−1CS−1BD−1

]
, (6.20)

where S = A − BD−1C is the Schur complement of D, to compute the predistortion that must
be applied to the signal to cancel out the transmitter IQI

s𝑐 (𝑡) =
(
�̂�𝐴𝑇 − �̂�𝐵𝑇�̂�

−∗
𝐴𝑇�̂�

∗
𝐵𝑇

)−1 (
s(𝑡) − �̂�𝐵𝑇�̂�

−∗
𝐴𝑇s∗(𝑡)

)
, (6.21)
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where s𝑐 (𝑡) denotes the predistorted signal that will be delivered to the RF chains. Similarly for
the receiver, because [

y(𝑡)
y∗(𝑡)

]
=

[
𝚯𝐴𝑅 𝚯𝐵𝑅

𝚯∗
𝐵𝑅

𝚯∗
𝐴𝑅

] [
x(𝑡)
x∗(𝑡)

]
(6.22)

is an almost identical expression, we may compensate receiver IQI by processing the received
signal in the following fashion

x𝑐 (𝑡) =
(
�̂�𝐴𝑅 − �̂�𝐵𝑅�̂�

−∗
𝐴𝑅�̂�

∗
𝐵𝑅

)−1 (
y(𝑡) − �̂�𝐵𝑅�̂�

−∗
𝐴𝑅y∗(𝑡)

)
, (6.23)

where x𝑐 (𝑡) is the estimate of the received signal without IQI. All the matrix inversions are easy
to perform because all the matrices are diagonal, and inverting a diagonal matrix is the same as
taking the multiplicative inverse of its elements. Also notice that the inverses always exist for
reasonable values of IQI coefficients, because 𝚯𝐴𝑇 ≈ 𝚯𝐴𝑅 ≈ I and 𝚯𝐵𝑇 ≈ 𝚯𝐵𝑅 ≈ 0, this means
that all matrices that are inverted have elements reasonably far from 0.

6.6 Numerical results

In this section, we will verify the efficacy of the proposed method by analysing simulation
results of the transmission of OFDM pilot slots under Tx/Rx IQI. The simulation setup is very
similar to the first setup of Section 5.6, i.e. 5G like CP-OFDM frame structure of QPSK
modulated symbols without the reference signals and HARQ. The channel is once again the
CDL-A channel model with 30 ns delay spread and 0 Hz maximum Doppler shift, i.e., constant
cluster delay line channel. We use 4 resource blocks with subcarrier spacing of 15 kHz, 1 Tx
antenna and 4 Rx antennas, and normal cyclic prefix, so each slot contains 14 OFDM symbols.
The simulations present the MSE and NMSE values as a function of the fraction of subchannels
used for different number of slots and SNR configurations, where a subchannel is defined as
a subcarrier and antenna ordered pair (𝑘, 𝑙). The used fraction of the subchannels is selected
according to the estimated equivalent channel power criterion, i.e., |𝑔1

𝑘,𝑙
|2 + |𝑔2

𝑘,𝑙
|2. The fraction

of subchannels can be said to be roughly equivalent to the fraction of subcarriers and the two
approaches should be essentially equivalent.

Up to this point, all simulations in previous chapters considered unrealistically large IQI
values, e.g., |𝜖𝑟 | ≈ 0.3 and |𝜓𝑟 | ≈ 20◦, this was done to show that the proposed method is
capable of estimating the IQI parameters even if the are in extreme ranges, because our method
does not rely on the “IQI is approximately ideal” assumption. On the other hand, to avoid any
possible suspicion that the method may rely on these extreme values to present proper estimates,
we will use more realistic values of IQI parameters in this section, namely 𝜖𝑟 = 0.1, 𝜓𝑟 = −4◦,
𝜖𝑡 = −0.08, and 𝜓𝑡 = 5◦. One consequence of reducing the magnitude of the IQI parameters is
that we should expect NMSE values to be increased, because simulations show that the MSE is
mostly independent of the parameter values (because the numerator approximately constant but
the denominator is reduced).

First, we will observe the impact of varying the number of training slots at a constant SNR
value. Fig. 6.1 presents the MSE for both the Tx and Rx IQI parameters estimated at a 10 dB
SNR for varying number of training slots. We can see that using up to half of the 48 subcarriers
produces equally bad results, regardless of the number of training slots. This is due to some
interesting interaction between the objective function and the subcarrier selection criterion. This
happens even if the number of resource blocks is increased, and it stops happening if we select
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Figure 6.1. MSE of the Tx and Rx IQI coefficients as a function of the fraction of subcarriers
used for estimation, CDL-A channel at 10 dB SNR. The legend indicates the number of slots
used.

subcarriers randomly or in frequency ascending order, as we will see in another set of figures.
One possible justification for this is that, for the CDL-A channel in the current configuration,
sorting the channels according to the estimated channel power reduces subchannel diversity,
compromising the estimation. Anyway, it can be verified that we can achieve MSEs at the order
of 10−4 by using only 5 slots with all subcarriers. Increasing the number of training slots yields
clearly diminishing returns after roughly 75 slots. By checking Fig. 6.2, we can see that, with
the estimated channel power sorting criterion and using less than half of subcarriers, the MSE is
roughly at about the same order of magnitude as the IQI parameters themselves, i.e. the NMSE
is approximately 1.

In Figs. 6.3 and 6.4 we present the MSE and NMSE, respectively, for 50 training slots IQI
coefficient estimation at different SNR values. The same interaction between the subcarrier
sorting criterion and the objective function happens here, with less than 50 subcarriers yielding
roughly the same results for all SNR values. As expected, higher SNR leads to better estimates
generally, and estimates get almost perfect if the SNR and number of slots are high enough. We
can see that the proposed method is effective in estimating both the Tx and Rx IQI parameters.
However, we have also observed that sorting the subcarriers in the described fashion leads to
bad results, basically making any results with less than half of the subcarriers useless. We now
present basically the same four figures so far but sorting the subcarriers by increasing frequency.
Figures 6.5 and 6.6 show the MSE and NMSE, respectively, for 10 dB SNR and varying number
of training slots. The MSE and NMSE curves as a function of the fraction of subcarriers
look much smoother than the previous figures. This indicates that, if one wants to use only a
fraction of the subbcarriers for estimation, it is better to not sort them according to the estimated
channel power criterion. It can also be seen that, at 10 dB SNR, using only 1 training slot is
not nearly enough for reliable IQI parameter estimation, leading to MSEs of the same order of
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Figure 6.2. NMSE of the Tx and Rx IQI coefficients as a function of the fraction of subcarriers
used for estimation, CDL-A channel at 10 dB SNR. The legend indicates the number of slots
used.

magnitude as the parameters themselves. Using 200 slots and all the available subcarriers allows
us to achieve MSEs with magnitudes of 10−6 at 10 dB SNR. As before, Figures 6.7 and 6.8
respectively show the MSE and NMSE for 50 training slots and varying SNR. It can be seen that
the log(𝑀𝑆𝐸) decreases roughly linearly with the SNR in dB. Also, the MSE can be reduced
almost indefinitely by increasing the SNR and tightening the optimizer’s stopping tolerance. For
example, at 100 dB SNR and 50 slots, MSEs of around 10−15 can be reached in the simulations,
which is basically perfect IQI estimation. By observing the results herein presented, we can
conclude that we have successfully developed a joint Tx and Rx IQI estimation procedure that
produces high quality estimates under usual transmission conditions.



61

Figure 6.3. MSE of the Tx and Rx IQI coefficients as a function of the fraction of subcarriers
used for estimation, CDL-A channel with 50 pilot slots. The legend indicates the SNR of the
transmission.

Figure 6.4. NMSE of the Tx and Rx IQI coefficients as a function of the fraction of subcarriers
used for estimation, CDL-A channel with 50 pilot slots. The legend indicates the SNR of the
transmission.
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Figure 6.5. MSE of the Tx and Rx IQI coefficients as a function of the fraction of subcarriers
used for estimation, CDL-A channel at 10 dB SNR. The legend indicates the number of slots
used. Subcarriers sorted in ascending frequency order.

Figure 6.6. NMSE of the Tx and Rx IQI coefficients as a function of the fraction of subcarriers
used for estimation, CDL-A channel at 10 dB SNR. The legend indicates the number of slots
used. Subcarriers sorted in ascending frequency order.
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Figure 6.7. MSE of the Tx and Rx IQI coefficients as a function of the fraction of subcarriers
used for estimation, CDL-A channel with 50 pilot slots. The legend indicates the SNR of the
transmission. Subcarriers sorted in ascending frequency order.

Figure 6.8. NMSE of the Tx and Rx IQI coefficients as a function of the fraction of subcarriers
used for estimation, CDL-A channel with 50 pilot slots. The legend indicates the SNR of the
transmission. Subcarriers sorted in ascending frequency order.
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7 COMPARING COMPENSATION METHODS

While the results present up to this point are more than sufficient to draw conclusions regarding
the effectiveness and quality of the proposed IQI estimation method, it still should be compared
to other existing IQI compensation procedures. In this chapter, we will present numerical results
for different IQI compensation methods, commenting on the more interesting characteristics of
each method and comparing their advantages and disadvantages relative to each other.

The first important question regarding the comparison between different IQI compensation
methods should be the metric used to compare them. The IQI parameter MSE, for example,
would be the more direct quantity, but not all IQI compensation methods require IQI parameter
estimation as an intermediary step. Other kinds of throughput related quantities can be used,
such as the BER or the SER. We have chosen to study the BER in a 5G PUSCH transmission
scenario.

As to which methods will be included in the comparison, we have chosen the adapted
Matera and Sterle blind estimator [15] (already used in Chapter 4 as a comparison for position
estimator MSE), and an adaptive WL filter for each OFDM subcarrier. The adaptive WL filters
are trained with the WL-LMS, a straightforward extension of the original LMS algorithm [7].
These methods have been chosen because each one represents a broader class of methods: blind
estimators and adaptive WL (or WL-equivalent) filters. Some methods have not been included
for one of the three reasons:

• The method requires knowledge of some parameter or quantity that is usually unavailable
in a practical scenario, such as the channel covariance matrices or the ratio between 𝛼𝑟
and 𝛽𝑟 .

• The method was developed specifically to some particular context that does not translate
well to the 5G scenario, thus causing the method to severely underperform. This is the
case of [13], for example, which uses the quite rudimentary channel estimation procedures
of HiperLAN/2.

• The method is not particularly simple to implement, specifically due to some more com-
plicated optimization methods such as the Rosenbrock search employed in [27]. This is
more of a pragmatic consideration, given the scope of this work.

The third item is included strictly for practical reasons, and it should be one of the priorities in
any future work in this topic to include these methods in the comparisons.

7.1 WL frequency domain equalization

Let us now describe the WL filters used in the simulations. In an FDE procedure, such as
included in most practical OFDM and SC-OFDM implementations, each subcarrier is usually
treated as experiencing a static subchannel orthogonal to other subcarriers (if no inter-carrier
interference exists). Each subchannel can be equalized using the many available equalization
methods, such as zero forcing (ZF) or MMSE equalizers, one of which is the WL equalizer
which takes the form

𝑥𝑘 (𝑚) = 𝜂𝑘,1𝑦𝑘 (𝑚) + 𝜂𝑘,2𝑦∗𝑘 (𝑚), (7.1)

where 𝑘 indicates the subcarrier, 𝑚 the OFDM symbol, 𝜂𝑘,1 and 𝜂𝑘,2 are the WL filter coeffi-
cients at subcarrier 𝑘 , 𝑦𝑘 (𝑚) is the received resource grid element, and 𝑥𝑘 (𝑚) is the estimated
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transmitted resource grid element. The WL filter in each subcarrier is trained independently
from the others using the WL-LMS algorithm

𝑥𝑘 (𝑚) = 𝜂𝑘,1(𝑚)𝑦𝑘 (𝑚) + 𝜂𝑘,2(𝑚)𝑦∗𝑘 (𝑚) (7.2)
𝑒𝑘 (𝑚) = 𝑥𝑘 (𝑚) − 𝑥𝑘 (𝑚) (7.3)[

𝜂𝑘,1(𝑚 + 1)
𝜂𝑘,2(𝑚 + 1)

]
=

[
𝜂𝑘,1(𝑚)
𝜂𝑘,2(𝑚)

]
+ 𝜇

[
𝑦𝑘 (𝑚)
𝑦∗
𝑘
(𝑚)

]
𝑒∗𝑘 (𝑚) (7.4)

for 𝑚 = 0, 1, . . . , 𝑁𝑠, where 𝜇 is the step size of the algorithm. The errors 𝑒𝑘 (𝑚) are computed
using the known pilot sequence elements 𝑥𝑘 (𝑚). In a practical scenario, usually only the
first elements of the training are from an actual pilot sequence, once the filter is already
providing sufficient compensation the system starts to use decision directed training by taking
hard decisions on the estimated symbols. In the simulations, for the WL filters, we consider that
all transmitted symbols are known, and we compute the BER by checking whether using the
estimated transmitted symbols 𝑥𝑘 (𝑚) would produce the correct bits. This is done to allow the
filter to continuously train throughout the whole transmission. To further improve the WL filter’s
performance, we reduce the step size 𝜇 at each frame by applying the update rule 𝜇← 𝜅𝜇 with
0 < 𝜅 < 1 (usually 𝜅 ≈ 1), this allows the filter to output better estimates. In the simulations,
we initialize 𝜇 = 0.05 and set 𝜅 = 0.98.

7.2 Simulation setup

Let us now describe simulation parameters that were used and the reasons behind them. One
of the most important transmission parameters in relation to assessing the effectiveness of an
IQI compensation procedure is the modulation order. Lower order modulations such as QPSK
and BPSK are clearly less susceptible to the effects of IQI, because their decision regions
occupy a proportionally larger portion of the symbol space. In these cases, relatively smaller
deviations caused by IQI are usually not capable of causing a symbol error unless noise is
significant. While compensating the IQI improves the BER performance, these modulations do
not distinguish much between how well the IQI is compensated in the first place, this causes
all methods, even those that only roughly compensate IQI, to perform similarly BER-wise.
Thus, to better identify the differences between the studied IQI compensation procedures, we
consider only higher order modulations, such as 256-quadrature amplitude modulation (QAM).
As per the 5G standard, forward error correction coding is employed in all PUSCH and physical
downlink shared channel (PDSCH) transmissions. The lower the code rate, the lower is the
impact of IQI on the decoded bits, because the additional information from the code can be used
to guide the decoding process and usually correct any symbol errors caused by IQI. Because
we compute the BER after decoding error correcting code, to focus on the effect of IQI, we use
the highest available code rate for 256-QAM modulation, which is 948/1024 and is specified in
Table 5.1.3.1-2 of [44].

Both our method and the blind estimator can be “trained” separately from the conditions in
which the BER is computed, because they estimate the IQI parameters and do not just attempt
compensate the IQI effects. For these methods, we estimate the IQI coefficients under a particular
SNR and with a predetermined quantity of training slots before computing the BER curves by
varying the SNR. This means that we can also assess the impacts of training sequence length
and training SNR on the BER curves. The training slots are transmitted at the same transmission
parameters as the actual data (except SNR and number of slots obviously), with the entire slots
being considered known and employed at the OFDM IQI estimation procedure described in
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Chapter 5. The blind estimator does not need any decoding, using the actual received waveform
instead. The WL filter, however, needs to be trained at each specific transmission SNR used
at each datapoint of the BER curves, this is because it attempts to compute the WL-MMSE
estimator of the received signal which depends on the noise power. This is another justification
to why we let the WL filters be continuously trained throughout the whole transmission, as
mentioned in the previous section.

Similar to the throughput simulation in Section 5.6, the results are not averaged over many
realizations of a transmission, instead they are computed from a single transmission of many
frames. We consider only severe receiver IQI, with the IQI parameters fixed at 𝜖𝑟 = −0.25 and
𝜓𝑟 = 35◦. We consider the transmission of 300 frames (unless otherwise stated) over the 5G
PUSCH, with 4 resource blocks, 2 transmit antennas and 4 receive antennas, PUSCH mapping
type A, DM-RS configuration type 1, first DM-RS symbol at symbol 2, single symbol DM-RS
with 3 additional symbols, no group hopping, static (i.e., 0 Hz maximum Doppler shift) TDL-
A channel with 30 ns delay spread. HARQ is disabled, i.e., the blocks are only transmitted
once at redundancy version (RV) 0, not allowing retransmissions. The signal is modulated
with CP-OFDM with normal cyclic prefix. Only a single layer is active and no precoding is
employed, thus effectively only 1 transmit antenna is transmitting. Regarding the decoding
process, after IQI compensation, the receiver performs practical channel estimation using the
DM-RS symbols and then performs MMSE equalization from the estimated noise variance and
estimated channel. The soft bits and constellation symbols are computed according to Section
6.3.1 of [43], those are then subjected to the inverse of the encoding process as defined in [49].
This process includes rate recovery, LDPC decoding, desegmentation, and CRC decoding. The
LDPC decoding is performed with belief propagation with a maximum of 12 iterations.

7.3 Results

We start by estimating the IQI parameters under favorable conditions, with 50 training slots and
20 dB SNR. The results from these estimates are presented in Fig. 7.1. As expected, we can see
that the IQI curve is basically constant at 0.5, which is equivalent to guessing the bits at random.
The Our Comp. curve, short for “our compensation method”, almost perfectly overlaps with
the Clean curve, which is the curve without any IQI. The Blind Comp. curve, represents the
IQI compensation using the blind estimator, overlaps with the WL-LMS Comp. curve, which is
the curve related to the WL frequency domain equalization and IQI compensation as described
in Section 7.1. In this case, our method clearly outperforms the other procedures and basically
perfectly compensates any noticeable effects of IQI on the BER.

If we reduce the SNR under which the IQI parameter estimation is performed to -10 dB, we
get the results in Fig. 7.2. The blind estimator now seems to overlap with the curve without
IQI, and our compensation scheme gets worse, distancing itself from the Clean curve. There are
two possible main reasons for this: the first is related to some particular behavior of the blind
estimator under this particular received signal and SNR, as it seems that 20 dB SNR produces
slightly better IQI parameter estimates; the second is related to the simulation itself not being an
average of many estimation runs, but instead using a single IQI estimation trial and evaluating
the BER from a long transmission using that estimate. It is intuitive that the true statistic average
would probably lie somewhere in between the WL-LMS and the Clean curves, but computing
this is very costly in terms of computational load and simulation time. The mentioned figure
once again displays the reliance of our method on the SNR.

If we again consider 20 dB SNR, but now reduce the number of training slots, we get the
results presented in Fig. 7.3. Clearly, 10 slots is not sufficient for the blind estimator to equal the
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WL filter’s performance, as the blind estimator now performs worse than the WL-LMS adaptive
filter. The proposed method seems to be mostly unaffected by the sequence length reduction,
mostly showing some performance degradation in comparison to the ideal case near the high
SNR regime at BER values of approximately 10−6. Reducing the SNR to 0 dB and keeping
the training sequence at 10 slots we get the curves in Fig. 7.4. The blind estimator seems to
experience same slight improvement due to SNR reduction that happened between Fig. 7.1 and
Fig. 7.2, overlapping again with the WL filter curve. The proposed method produces slightly
worse estimates in comparison to the 20 dB case, as evidenced by the slight separation between
the Our Comp. and Clean curves in the figure. Still, our method vastly outperforms the others
in this scenario.

The figures from this section highlight the already explored characteristics of the method
proposed herein, namely the dependence on SNR and pilot sequence length. The dependence
on the number of pilot subcarriers was not explored in this section, but it can be approximated
by comparing the MSE values presented in Section 5.6. It can be stated with confidence that the
IQI compensation procedure developed in this thesis is not only competitive performance-wise
in relation to the other explored methods, but it also is superior in many cases, specially if many
pilot frames can be allocated and the SNR is favorable.
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Figure 7.1. BER curves for IQI estimated at 50 training slots at 20 dB SNR.

Figure 7.2. BER curves for IQI estimated at 50 training slots at -10 dB SNR.
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Figure 7.3. BER curves for IQI estimated at 10 training slots at 20 dB SNR.

Figure 7.4. BER curves for IQI estimated at 10 training slots at 0 dB SNR.
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8 CONCLUSION

We have presented a general procedure for IQI modeling, both in the wireless transmitter and
receiver. Not only did the derivation lead to two of the most common IQI models, but it also
lead to a general frequency independent IQI model allowing for arbitrary amplitude and phase
imbalances in both the I and Q branches. We have then presented a survey containing some
of the more common methods for IQI compensation and estimation. In this survey, we laid
out the original expressions for each method and described their assumptions, advantages, and
disadvantages.

As a first original contribution of this thesis, an IQI compensation procedure tailored for
positioning applications in a flat fading channel conditions was introduced. The effectiveness
of the proposed procedure was compared to a blind estimator in a set of numerical results. It
was shown that our method produced consistent improvement in relation to the blind estimator,
at the expense of increased computational effort. It was shown that the proposed method can
noticeably improve positioning estimation performance, basically equaling the case without any
IQI.

The proposed method was then adapted and extended to an OFDM context, performing IQI
estimation over pilot subcarriers. This led us to use the 5G reference signals to establish a
5G NR compliant IQI estimation technique. The performance of these methods was laid out
in a numerical results section, where it was verified that the OFDM and the 5G compliant
IQI estimation procedures have the potential to produce accurate IQI estimates under typical
conditions. If the scenario is particularly favorable in terms of SNR and pilot sequence length,
these methods can vastly outperform the considered blind estimator.

Perhaps the most relevant presented result in this thesis is the derivation of a baseband
processing based joint Tx and Rx IQI estimation and compensation method for OFDM systems
that does not rely on knowing the signal at adjacent subcarriers. This is a considerably harder
problem than estimating or compensating only receiver IQI, as a consequence of this, few
satisfactory solutions exist in the bibliography. The resulting optimization problem is non-
convex with many local minima, which makes the optimization of the objective function a
much bigger issue than in the receiver-only IQI estimation. A combination of Nelder-Mead
simplex search and constrained particle swarm optimization was used to very reliably reach the
neighborhood of the local optimum. To finish the chapter, the efficacy of our method was verified
numerically. It was noticeable that sorting the subcarriers by descending approximate channel
magnitude did not provide any improvement in minimizing the needed amount of subcarriers for
estimation, instead it deteriorated the estimation performance for when using less than half of
the subcarriers. Nonetheless, it was shown that the proposed method can reliably estimate both
transmitter and receiver IQI coefficients without relying on small IQI assumptions or needing
the knowledge of difficult to estimate values, such as the channel covariance matrices or the ratio
between IQI coefficients.

To conclude the thesis, we presented a comparison between our proposed OFDM IQI com-
pensation scheme, the blind estimator, and an adaptive WL equalizer. It was observed that IQI
makes the use of higher order constellations impossible, and that IQI compensation is extremely
important for those cases. We show that, if the number of pilot slots and the SNR are sufficiently
high, our method outperforms both the blind estimator and the adaptive equalizer, demonstrating
no perceptible BER performance floor and frequently presenting a BER curve very close to the
scenario without IQI.

A general characteristic of the proposed IQI estimation and compensation methods that was
repeatedly verified in the numerical results is its reliance on the SNR and pilot sequence length.
If the SNR is too low, the method needs very long pilot sequences to equal the performance of
a simple blind estimator. Some discussion regarding low SNR IQI estimation was conducted
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in Section 5.3, including a possible method for IQI estimation in those scenarios. However,
these procedures have not been further developed, neither were they verified numerically in this
thesis. Using the ideas from that section to improve the performance of the new method in low
SNR conditions may lead to interesting results and is a topic for future work.

Another interesting research direction that should be further explored concerns dealing with
time-varying channels. In this thesis, the channels have been treated as static throughout the
whole transmission, however this is frequently not the case, specially for mobile links. The
static channel assumption is likely to deteriorate the performance of the current version of the
proposed IQI estimation method in practical scenarios. Thus, it is relevant to study possible
forms of enhancing the method to make it more robust to channel time variation. Moreover,
because the estimator relies on the constant channel assumption, we have seen that the coherence
time of the channel restricts the maximum length of the pilot sequence. Therefore, extending
the algorithm to deal with time varying channels makes it so that the channel coherence time is
no longer a limiting factor in the maximum pilot sequence length.
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Appendix 1 Overview of Widely Linear operators

One of the first documented applications of the idea of Widely Linear (WL) filtering seems
to be by Brown and Crane [54], while the terminology itself was introduced by Picinbono and
Chevalier [22] in a context of mean square estimation as an extension of the commonplace
linear filtering. WL filtering is relevant in the context of complex improper random processes,
where improper means that a random process 𝑥(𝑡) is correlated with its complex conjugate,
i.e. E {𝑥(𝑡0)𝑥(𝑡1)} ≠ 0 for some 𝑡0 and 𝑡1. A detailed exploration of the concepts of proper
and improper signal processing, including WL filtering, is presented in [23]. The explanation
presented in this appendix is taken directly from this reference.

Let Ω be the sample space of a random vector x : Ω → C𝑛, and let x∗ denote the complex
conjugate of x. Also let H1 and H2 ∈ C𝑚×𝑛, then we say H(x) = H1x +H2x∗ is a WL operator,
also called a linear-conjugate-linear operator. Clearly the set of (strictly) linear operators are a
subset of the WL operators with H2 = 0. A typical representation of WL operators uses the so
called augmented matrix H𝑒, which satisfies[

y
y∗

]
=

[
H1 H2
H∗2 H∗1

] [
x
x∗

]
→ ye = H𝑒x𝑒 (10.1)

This is a convenient representation of WL operators. Denote the set of all matrices with the
above augmented matrix structure as W𝑚×𝑛, then, for 𝑚 = 𝑛, W𝑛×𝑛 is a matrix algebra over
the real numbers, closed under addition, multiplication, inversion, and multiplication by a real
scalar.

Regarding estimation, the WL-MMSE estimator is a WL operator that minimizes the mean
square error between the estimated zero-mean signal x̂𝑊𝐿 = W1y +W2y∗, computed from the
zero-mean measurements y, and the ground truth value of x, i.e. the WL-MMSE estimator
minimizes 𝜀𝑊𝐿 = E

{
∥x̂𝑜𝑝𝑡
𝑊𝐿
− x∥2

}
. The WL-MMSE estimator can be derived in similar fashion

to the linear MMSE estimator, leading to the augmented Wiener-Hopf equations

W𝑜𝑝𝑡
𝑒 = Rxy,𝑒R−1

yy,𝑒 (10.2)

where

Rxy,𝑒 = E
{
x𝑒y𝐻𝑒

}
= E

{[
x
x∗

] [
y𝐻 y𝑇

]}
=

[
Rxy Qxy
Q∗xy R∗xy

]
(10.3)

Ryy,𝑒 = E
{
y𝑒y𝐻𝑒

}
= E

{[
y
y∗

] [
y𝐻 y𝑇

]}
=

[
Ryy Qyy
Q∗yy R∗yy

]
(10.4)

The WL-MMSE estimate is given by [
x̂
x̂∗

]
= W𝑜𝑝𝑡

𝑒

[
y
y∗

]
. (10.5)

Clearly the linear MMSE estimator is a suboptimal estimator in a WL context, which satisfies

W𝐿
𝑒 =

[
RxyR−1

yy 0
0 R∗xyR−∗yy

]
, (10.6)

completely ignoring any information associated with the complementary covariance matrices
Qyy and Qxy, which are assumed to be zero in the linear MMSE estimator. It is possible to show
that the WL-MMSE estimator is always at least as good as the linear MMSE estimator.
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Appendix 2 Quasiconvexity of the objective function

Showing that 𝛾 is convex on some regions, and determining the specific conditions for finding
these regions is a very complicated task. We will instead try showing that 𝛾 is quasiconvex, i.e.,
that its sublevel sets are convex, within some domain. First we write the sublevel sets

S𝜂 =
{
(𝜖𝑟 , �̂�𝑟) : 𝛾(𝜖𝑟 , �̂�𝑟) ≤ 𝜂, and − 1 < 𝜖𝑟 < 1,−𝜋

2
< �̂�𝑟 <

𝜋

2

}
. (10.7)

We restrict the variables to the domains −1 < 𝜖𝑟 < 1 and − 𝜋2 < �̂�𝑟 <
𝜋
2 for practical reasons,

since IQI is a phase and amplitude imbalance in the IQ demodulator LO signals, 𝜖 and 𝜓𝑟 are
typically near 0. In that perspective, the chosen domain may even be said to be too large, the
parameters should in no real situation be even close to border of the intervals. Similarly, the
true values 𝜖𝑟 and 𝜓𝑟 are also restricted to these intervals.

We proceed with expanding the expression

1
2
+ 𝜖

2
𝑟 + 2𝜖𝑟 − 2(𝜖𝑟 + 1) (𝜖𝑟 + 1)

2(𝜖2
𝑟 + 2𝜖𝑟 + 2)

cos(�̂�𝑟 − 𝜓𝑟) ≤ 𝜂, (10.8)

which becomes a second degree polynomial in 𝜖𝑟 :

𝑎𝜖2
𝑟 + 𝑏𝜖𝑟 + 𝑐 ≥ 0 (10.9)
𝑎(𝜂) = (2𝜂 − 1) (10.10)

𝑏(Δ𝜓𝑟 , 𝜂) = (2(2𝜂 − 1) + 2(𝜖𝑟 + 1) cos(Δ𝜓𝑟)) (10.11)
𝑐(Δ𝜓𝑟 , 𝜂) = 2(2𝜂 − 1) + 2(𝜂 + 1) cos(Δ𝜓𝑟) − 𝜖2

𝑟 − 2𝜖𝑟 , (10.12)

whereΔ𝜓𝑟 = �̂�𝑟−𝜓𝑟 . For 0 ≤ 𝜂 < 1
2 this polynomial is concave on 𝜖𝑟 , and under these conditions,

we have a set in 𝜖𝑟 that satisfies the inequality in (10.9) equal to [𝑟1(Δ𝜓𝑟 , 𝜂), 𝑟2(Δ𝜓𝑟 , 𝜂)] where

𝑟1,2(Δ𝜓𝑟 , 𝜂) =
−𝑏(Δ𝜓𝑟 , 𝜂) ±

√︁
𝑏(Δ𝜓𝑟 , 𝜂)2 − 4𝑎(𝜂)𝑐(Δ𝜓𝑟 , 𝜂)

2𝑎(𝜂) , (10.13)

when the roots exist. For 𝜂 > 1
2 , then the solution set becomes disjoint: 𝜖𝑟 ∈ (−∞, 𝑟2(Δ𝜓𝑟 , 𝜂)] ∪

[𝑟1(Δ𝜓𝑟 , 𝜂),∞), but in that case, only one of the sets (−∞, 𝑟2(Δ𝜓𝑟 , 𝜂)] or [𝑟1(Δ𝜓𝑟 , 𝜂),∞) will
have a non-empty intersection with (−1, 1) ×

(
− 𝜋2 ,

𝜋
2
)
, thus it suffices to analyse the convexity

of this set. We will only focus on showing conditions for quasiconvexity on the 0 ≤ 𝜂 < 1
2

interval. The reasoning for 𝜂 ≥ 1
2 is similar and can be done in a straightforward way with the

same methods that will be presented.
Similarly, a set in Δ𝜓𝑟 is defined such that

𝑏(Δ𝜓𝑟 , 𝜂)2 − 4𝑎(𝜂)𝑐(Δ𝜓𝑟 , 𝜂) ≥ 0 (10.14)

because 𝜖𝑟 must be real-valued. This set in Δ𝜓𝑟 is given by

Δ𝜓𝑟 ∈ [Δ𝜓𝑟,𝑚𝑖𝑛 (𝜂),Δ𝜓𝑟,𝑚𝑎𝑥 (𝜂)] (10.15)
Δ𝜓𝑟,𝑚𝑖𝑛 (𝜂) = − arccos(𝑝1(𝜂)), Δ𝜓𝑟,𝑚𝑎𝑥 (𝜂) = arccos(𝑝1(𝜂)) (10.16)

𝑝(𝜂)1,2 = cos(Δ𝜓𝑟,𝑚𝑎𝑥/𝑚𝑖𝑛 (𝜂)) = ±

√︄
(𝜖𝑟 + 1)2 − 2𝜂(𝜖2

𝑟 + 2(𝜖𝑟 − 𝜂) + 2)
(𝜖𝑟 + 1)2

(10.17)
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The 𝑝(𝜂)2 branch (negative sign for the square root) is outside the range of interest, but it meets
with the 𝑝1(𝜂) branch when cos(Δ𝜓𝑟,𝑚𝑎𝑥/𝑚𝑖𝑛 (𝜂)) = 0, which is satisfied for

𝜂 =
(𝜖𝑟 + 1)2

2
(10.18)

This means that the two regions are disjoint in Δ𝜓𝑟 for some 𝜖𝑟 up until the level is 𝜂 =
(𝜖𝑟+1)2

2 .
Naturally, these disjoint regions are a mere product of the periodicity in Δ𝜓𝑟 , however, we only
care about the principal branch centered around Δ𝜓𝑟 = 0. It can also be shown that the condition
0 ≤ 𝜂 ≤ (𝜖𝑟+1)2

2 guarantees that 𝑏(Δ𝜓𝑟 , 𝜂)2 − 4𝑎(𝜂)𝑐(Δ𝜓𝑟 , 𝜂) ≥ 0, when 0 ≤ 𝜂 ≤ 1/2. For
𝜂 > 1/2, 𝑏(Δ𝜓𝑟 , 𝜂)2 − 4𝑎(𝜂)𝑐(Δ𝜓𝑟 , 𝜂) ≥ 0 when 𝜂 ≥ (𝜖𝑟+1)

2

2 . By substituting 𝜂 = 0 in (10.17)
and in (10.13), we get a sublevel set equal to the single point (𝜖𝑟 , 𝜓𝑟), confirming that 𝛾 has an
unique minimum at the true value of the IQI parameters.

For 0 ≤ 𝜂 < 1
2 , the sublevel sets are then given by

S𝜂 =
{
(𝜖𝑟 , �̂�𝑟) : 𝜖𝑟 ∈ [𝑟1(Δ𝜓𝑟 , 𝜂), 𝑟2(Δ𝜓𝑟 , 𝜂)] for

Δ𝜓𝑟 ∈ [Δ𝜓𝑟,𝑚𝑖𝑛,Δ𝜓𝑟,𝑚𝑎𝑥], and − 1 < 𝜖𝑟 < 1,−𝜋
2
< �̂�𝑟 <

𝜋

2

}
. (10.19)

From this formulation of the sublevel sets we can see that they are in fact the intersection of the
epigraph of 𝑟1(Δ𝜓𝑟 , 𝜂) with the hypograph of 𝑟2(Δ𝜓𝑟 , 𝜂), for Δ𝜓𝑟 ∈ [Δ𝜓𝑟,𝑚𝑖𝑛 (𝜂),Δ𝜓𝑟,𝑚𝑎𝑥 (𝜂)].
We want to find out whether these sublevel sets are convex and under which conditions on 𝜂 this
happens. If the epigraph of 𝑟1(Δ𝜓𝑟 , 𝜂) and the hypograph of 𝑟2(Δ𝜓𝑟 , 𝜂) are convex, then the
sublevel set is convex, because it is an intersection of convex sets.

Writing down the expression for 𝑟1(Δ𝜓𝑟 , 𝜂) with the dependence on Δ𝜓𝑟 and 𝜂 being sup-
pressed for cleanliness of notation, and manipulating it

𝑟1 =
−𝑏 +

√
𝑏2 − 4𝑎𝑐
2𝑎

(10.20)

−𝑏
2𝑎

= −
(
2 + 𝜖𝑟 + 1

2𝜂 − 1
cos(Δ𝜓𝑟)

)
(10.21)√︁

𝑏2 − 4𝑎𝑐 =
√︃

4(𝜖𝑟 + 1)2 cos2(Δ𝜓𝑟) − 4(2𝜂 − 1) (2𝜂 − (𝜖𝑟 + 1)2 (10.22)

= 2(𝜖𝑟 + 1)

√︄
cos2(Δ𝜓𝑟) + (2𝜂 − 1)

(
1 − 2𝜂
(𝜖𝑟 + 1)2

)
(10.23)

√
𝑏2 − 4𝑎𝑐

2𝑎
=
𝜖𝑟 + 1
2𝜂 − 1

√︄
cos2(Δ𝜓𝑟) + (2𝜂 − 1)

(
1 − 2𝜂
(𝜖𝑟 + 1)2

)
(10.24)

And finally

𝑟1 = −2 − 𝜖𝑟 + 1
2𝜂 − 1

(
cos(Δ𝜓𝑟) −

√︃
cos2(Δ𝜓𝑟) + 𝐾

)
(10.25)

𝐾 = (2𝜂 − 1)
(
1 − 2𝜂
(𝜖𝑟 + 1)2

)
(10.26)
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Because, for 0 ≤ 𝜂 < 1
2 , (2𝜂 − 1) is a negative constant, to show convexity of 𝑟1 is equivalent

to show convexity of the term inside the parenthesis, which we’ll call 𝜁 (Δ𝜓𝑟). The second
derivative of 𝜁 with respect to Δ𝜓𝑟 is

𝜕2𝜁

𝜕Δ𝜓2
𝑟

(Δ𝜓𝑟) = − cos(Δ𝜓𝑟) +
cos2(Δ𝜓𝑟)√︁

cos2(Δ𝜓𝑟) + 𝐾
+ sin2(2Δ𝜓𝑟)
(
√︁

cos2(Δ𝜓𝑟) + 𝐾)3
− sin2(Δ𝜓𝑟)√︁

cos2(Δ𝜓𝑟) + 𝐾
(10.27)

It can be shown that, for 𝐾 ≤ 0, 𝜕2𝜁

𝜕Δ𝜓2
𝑟
≥ 0 ∀ Δ𝜓𝑟 such that

√︁
cos2(Δ𝜓𝑟) + 𝐾 ∈ R which is

equivalent to say that 𝑟1 is convex in Δ𝜓𝑟 ∈ [Δ𝜓𝑟,𝑚𝑖𝑛,Δ𝜓𝑟,𝑚𝑎𝑥] when 𝐾 ≤ 0. This is done by
noticing that, under these conditions, the following inequalities hold

cos2(Δ𝜓𝑟)√︁
cos2(Δ𝜓𝑟) + 𝐾

≥ cos(Δ𝜓𝑟) (10.28)

sin2(2Δ𝜓𝑟)
(
√︁

cos2(Δ𝜓𝑟) + 𝐾)3
≥ sin2(Δ𝜓𝑟)√︁

cos2(Δ𝜓𝑟) + 𝐾
(10.29)

Thus, the second derivative is always non-negative under the stated conditions. Let us now
understand the implications of 𝐾 ≤ 0. Because (2𝜂 − 1) is negative, we can rewrite it as the
condition

(
1 − 2𝜂

(𝜖𝑟+1)2

)
≥ 0, which is equivalent to 𝜂 ≤ (𝜖𝑟+1)

2

2 . This is the same condition for

𝑏2 − 4𝑎𝑐 ≥ 0, we then conclude once again that 𝜕2𝜁

𝜕Δ𝜓2
𝑟
≥ 0 ∀ Δ𝜓𝑟 ∈ [Δ𝜓𝑟,𝑚𝑖𝑛,Δ𝜓𝑟,𝑚𝑎𝑥], by the

very definition of the [Δ𝜓𝑟,𝑚𝑖𝑛,Δ𝜓𝑟,𝑚𝑎𝑥] set.
The same can be done to show the concavity of 𝑟2, which ends up reducing to showing that

𝜕2𝜉

𝜕Δ𝜓2 (Δ𝜓𝑟) ≤ 0 (10.30)

𝜉 (Δ𝜓𝑟) =
(
cos(Δ𝜓𝑟) +

√︃
cos2(Δ𝜓𝑟) + 𝐾

)
(10.31)

Computing the second derivative, we get

𝜕2𝜉

𝜕Δ𝜓2
𝑟

(Δ𝜓𝑟) = − cos(Δ𝜓𝑟) −
cos2(Δ𝜓𝑟)√︁

cos2(Δ𝜓𝑟) + 𝐾
− sin2(2Δ𝜓𝑟)
(
√︁

cos2(Δ𝜓𝑟) + 𝐾)3
+ sin2(Δ𝜓𝑟)√︁

cos2(Δ𝜓𝑟) + 𝐾
(10.32)

The first two terms are already non-positive for Δ𝜓𝑟 ∈
[
− 𝜋2 ,

𝜋
2
]
, which is a superset of

[Δ𝜓𝑟,𝑚𝑖𝑛,Δ𝜓𝑟,𝑚𝑎𝑥]. The sum of the third and fourth terms is non-positive as a consequence of the
(10.29), which holds for 𝐾 ≤ 0. We then conclude that 𝑟1 and 𝑟2 are convex and concave, respec-
tively, in Δ𝜓𝑟 . Thus, the epigraph of 𝑟1 and the hypograph of 𝑟2 are convex, and so is their inter-
section. This intersection is the sublevel set for a particular value of 𝜂, which is convex as long
as 0 ≤ 𝜂 ≤ (𝜖𝑟+1)

2

2 (we only showed this for 0 ≤ 𝜂 < 1
2 , but convexity of the sublevel sets holds

whenever the former inequality is satisfied). Violating this condition leads to sublevel sets which
are not necessarily convex over the whole practical domain of Δ𝜓𝑟 . Then we can safely state
that 𝛾 is quasiconvex on the Ω =

{
(𝜖𝑟 , �̂�𝑟) : 𝛾(𝜖𝑟 , �̂�𝑟) ≤ (𝜖𝑟+1)

2

2 , −1 < 𝜖𝑟 < 1,− 𝜋2 < �̂�𝑟 <
𝜋
2

}
domain.
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Appendix 3 Adapting the blind IQI estimator

Here we detail the steps taken to adapt the estimator in [15] to the IQI model used in this thesis.
The procedure relies on performing the same original derivation but assuming our model. We
will now present this short derivation. Assume the transmitted signal x(𝑛) ∼ CN(0, 𝜎2

𝑥 I, 0),
i.e., x(𝑛) is a complex white circularly symmetric Gaussian random variable. Further assume
that x(𝑛), for 𝑛 = 1, 2, . . . , 𝑁 is a WSS random process, then from (4.2) we can state that
y(𝑛) ∼ CN(0, 𝜎2

𝑥 (𝚯𝐴𝚯𝐻
𝐴
+𝚯𝐵𝚯𝐻

𝐵
), 2𝜎2

𝑥𝚯𝐴𝚯𝐵). Because y has diagonal covariance and com-
plementary covariance matrices, we can match the diagonal elements of the sample covariance
and complementary covariance matrices to the theoretical expressions, yielding

𝑁−1∑︁
𝑛=0

𝑦𝑘 (𝑛)𝑦∗𝑘 (𝑛) = 𝜎
2
𝑥 ( |𝛼𝑘 |2 + |𝛽𝑘 |2) =

1 + 𝑚2
𝑘

2
𝜎2
𝑥 (10.33)

ℜ𝔢

{
𝑁−1∑︁
𝑛=0

𝑦𝑘 (𝑛)𝑦𝑘 (𝑛)
}
=

1 − 𝑚2
𝑘

2
𝜎2
𝑥 (10.34)

ℑ𝔪

{
𝑁−1∑︁
𝑛=0

𝑦𝑘 (𝑛)𝑦𝑘 (𝑛)
}
= −𝜎2

𝑥𝑚𝑘 sin(𝜓𝑘 ), (10.35)

where 𝑚𝑘 = 1+ 𝜖𝑘 and 𝜓𝑘 are the IQI coefficients for the 𝑘th antenna. Solving for 𝑚𝑘 in (10.33)
and (10.34) we get

𝑚𝑘 =

√√∑𝑁−1
𝑛=0 𝑦𝑘 (𝑛)𝑦∗𝑘 (𝑛) −ℜ𝔢

{∑𝑁−1
𝑛=0 𝑦𝑘 (𝑛)𝑦𝑘 (𝑛)

}∑𝑁−1
𝑛=0 𝑦𝑘 (𝑛)𝑦∗𝑘 (𝑛) +ℜ𝔢

{∑𝑁−1
𝑛=0 𝑦𝑘 (𝑛)𝑦𝑘 (𝑛)

} . (10.36)

Using (10.33), (10.34), (10.35), and (10.36) we can solve for 𝜓𝑘 in similar fashion to get

𝜓𝑘 = sin−1

(
ℑ𝔪

{∑𝑁−1
𝑛=0 𝑦𝑘 (𝑛)𝑦𝑘 (𝑛)

} (
1 + 𝑚2

𝑘

)
2𝑚𝑘

∑𝑁−1
𝑛=0 𝑦𝑘 (𝑛)𝑦∗𝑘 (𝑛)

)
. (10.37)

The expressions (10.36) and (10.37) are the resulting blind estimates.
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Appendix 4 Derivation of the gradient of the objective function

From (5.16), we compute the derivatives

𝜕 𝑓

𝜕𝜖𝑟
=

𝐾∑︁
𝑘=−𝐾

𝑁𝑠−1∑︁
𝑚=0

𝜕

𝜕𝜖𝑟

(
∥e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)∥2

)
=

𝐾∑︁
𝑘=−𝐾

𝑁𝑠−1∑︁
𝑚=0

2ℜ𝔢

{
e∗𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)

𝜕

𝜕𝜖𝑟

(
e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)

)}
(10.38)

𝜕 𝑓

𝜕�̂�𝑟
=

𝐾∑︁
𝑘=−𝐾

𝑁𝑠−1∑︁
𝑚=0

𝜕

𝜕�̂�𝑟

(
∥e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)∥2

)
=

𝐾∑︁
𝑘=−𝐾

𝑁𝑠−1∑︁
𝑚=0

2ℜ𝔢

{
e∗𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)

𝜕

𝜕�̂�𝑟

(
e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)

)}
.

(10.39)

From (5.17), we expand the matrix products and get

𝜕

𝜕𝜖𝑟

(
e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)

)
= − 𝜕

𝜕𝜖𝑟

(
|�̂�𝑟 |2g̃1,𝑘 + �̂�𝑟𝛽𝑟 g̃∗2,−𝑘
|�̂�𝑟 |2 + |𝛽𝑟 |2

)
𝑠𝑘 (𝑚)

− 𝜕

𝜕𝜖𝑟

(
�̂�𝑟𝛽𝑟 g̃∗1,−𝑘 + |𝛽𝑟 |

2g̃2,𝑘

|�̂�𝑟 |2 + |𝛽𝑟 |2

)
𝑠∗−𝑘 (𝑚) (10.40)

𝜕

𝜕�̂�𝑟

(
e𝑘,𝑚 (𝜖𝑟 , �̂�𝑟)

)
= − 𝜕

𝜕�̂�𝑟

(
|�̂�𝑟 |2g̃1,𝑘 + �̂�𝑟𝛽𝑟 g̃∗2,−𝑘
|�̂�𝑟 |2 + |𝛽𝑟 |2

)
𝑠𝑘 (𝑚)

− 𝜕

𝜕�̂�𝑟

(
�̂�𝑟𝛽𝑟 g̃∗1,−𝑘 + |𝛽𝑟 |

2g̃2,𝑘

|�̂�𝑟 |2 + |𝛽𝑟 |2

)
𝑠∗−𝑘 (𝑚), (10.41)

with each term’s derivative in 𝜖𝑟 being

𝜕

𝜕𝜖𝑟

(
|𝛼𝑟 |2

|�̂�𝑟 |2 + |𝛽𝑟 |2

)
= − 𝜕

𝜕𝜖𝑟

(
|𝛽𝑟 |2

|�̂�𝑟 |2 + |𝛽𝑟 |2

)
= − 𝜖𝑟 (𝜖𝑟 + 2)
(𝜖2
𝑟 + 2𝜖𝑟 + 2)2

cos(�̂�𝑟) (10.42)

𝜕

𝜕𝜖𝑟

(
𝛼𝑟𝛽𝑟

|�̂�𝑟 |2 + |𝛽𝑟 |2

)
=
−2(𝜖𝑟 + 1) + 𝑗𝜖𝑟 (𝜖𝑟 + 2)
(𝜖2
𝑟 + 2𝜖𝑟 + 2)2

sin(�̂�𝑟), (10.43)

and the derivatives in �̂�𝑟 being

𝜕

𝜕�̂�𝑟

(
|𝛼𝑟 |2

|�̂�𝑟 |2 + |𝛽𝑟 |2

)
= − 𝜕

𝜕�̂�𝑟

(
|𝛽𝑟 |2

|�̂�𝑟 |2 + |𝛽𝑟 |2

)
= − 𝜖𝑟 + 1

𝜖2
𝑟 + 2𝜖𝑟 + 2

sin(�̂�𝑟) (10.44)

𝜕

𝜕�̂�𝑟

(
𝛼𝑟𝛽𝑟

|�̂�𝑟 |2 + |𝛽𝑟 |2

)
= − 𝑗 𝜖𝑟 + 1

𝜖2
𝑟 + 2𝜖𝑟 + 2

cos(�̂�𝑟). (10.45)

Substituting the derivatives back into (10.38) and (10.39) concludes our derivation of the gradient
of 𝑓 .
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