1,554 research outputs found

    Optimal uncertainty quantification for legacy data observations of Lipschitz functions

    Get PDF
    We consider the problem of providing optimal uncertainty quantification (UQ) --- and hence rigorous certification --- for partially-observed functions. We present a UQ framework within which the observations may be small or large in number, and need not carry information about the probability distribution of the system in operation. The UQ objectives are posed as optimization problems, the solutions of which are optimal bounds on the quantities of interest; we consider two typical settings, namely parameter sensitivities (McDiarmid diameters) and output deviation (or failure) probabilities. The solutions of these optimization problems depend non-trivially (even non-monotonically and discontinuously) upon the specified legacy data. Furthermore, the extreme values are often determined by only a few members of the data set; in our principal physically-motivated example, the bounds are determined by just 2 out of 32 data points, and the remainder carry no information and could be neglected without changing the final answer. We propose an analogue of the simplex algorithm from linear programming that uses these observations to offer efficient and rigorous UQ for high-dimensional systems with high-cardinality legacy data. These findings suggest natural methods for selecting optimal (maximally informative) next experiments.Comment: 38 page

    Complete genomic sequence of Raphanus sativus cryptic virus 4 (RsCV4), a novel alphapartitivirus from radish

    Get PDF
    The present work reports the discovery and complete genome sequencing of a virus from symptomless radish seedlings, classifiable as a novel member of the genus Alphapartitivirus, family Partitiviridae. Total RNA extracted from germinating seedlings was sequenced using Illumina technology. Bioinformatic analysis of the RNA-seq data revealed two contigs representing the near full-length genomic sequences of two genomic RNAs representing a new virus. Analysis of the genome sequence (excluding the polyA tail, RNA1: 1976 nt and RNA2: 1751 nt, respectively) showed a genomic organization typical of viruses classed within the Partitiviridae, with each genomic RNA encoding a single open reading frame (ORF). Phylogenetic analysis of the RNA dependent RNA polymerase (RNA1 ORF) and of the capsid protein (RNA2 ORF) clearly showed the new virus can be classified within the genus Alphapartitivirus, but sequence divergence establishes it as a new species, for which the name “Raphanus sativus cryptic virus 4” is proposed

    Ferritins: furnishing proteins with iron

    Get PDF
    Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins

    Measurement in Economics and Social Science

    Get PDF
    The paper discusses measurement, primarily in economics, from both analytical and historical perspectives. The historical section traces the commitment to ordinalism on the part of economic theorists from the doctrinal disputes between classical economics and marginalism, through the struggle of orthodox economics against socialism down to the cold-war alliance between mathematical social science and anti-communist ideology. In economics the commitment to ordinalism led to the separation of theory from the quantitative measures that are computed in practice: price and quantity indexes, consumer surplus and real national product. The commitment to ordinality entered political science, via Arrow’s ‘impossibility theorem’, effectively merging it with economics, and ensuring its sterility. How can a field that has as its central result the impossibility of democracy contribute to the design of democratic institutions? The analytical part of the paper deals with the quantitative measures mentioned above. I begin with the conceptual clarification that what these measures try to achieve is a restoration of the money metric that is lost when prices are variable. I conclude that there is only one measure that can be embedded in a satisfactory economic theory, free from unreasonable restrictions. It is the Törnqvist index as an approximation to its theoretical counterpart the Divisia index. The statistical agencies have at various times produced different measures for real national product and its components, as well as related concepts. I argue that all of these are flawed and that a single deflator should be used for the aggregate and the components. Ideally this should be a chained Törnqvist price index defined on aggregate consumption. The social sciences are split. The economic approach is abstract, focused on the assumption of rational and informed behavior, and tends to the political right. The sociological approach is empirical, stresses the non-rational aspects of human behavior and tends to the political left. I argue that the split is due to the fact that the empirical and theoretical traditions were never joined in the social sciences as they were in the natural sciences. I also argue that measurement can potentially help in healing this split

    A Rejoinder on Energy versus Impact Indicators

    Get PDF
    Citation distributions are so skewed that using the mean or any other central tendency measure is ill-advised. Unlike G. Prathap's scalar measures (Energy, Exergy, and Entropy or EEE), the Integrated Impact Indicator (I3) is based on non-parametric statistics using the (100) percentiles of the distribution. Observed values can be tested against expected ones; impact can be qualified at the article level and then aggregated.Comment: Scientometrics, in pres

    Magnetoresistance of a 2-dimensional electron gas in a random magnetic field

    Full text link
    We report magnetoresistance measurements on a two-dimensional electron gas (2DEG) made from a high mobility GaAs/AlGaAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surface of the sample. A theoretical explanation in excellent agreement with the experiment is given within the framework of the semiclassical Boltzmann equation.Comment: REVTEX 3.0, 11 pages, 3 Postscript figures appended. The manuscript can also be obtained from our World Wide Web server: http://roemer.fys.ku.dk/randmag.ht

    Striped periodic minimizers of a two-dimensional model for martensitic phase transitions

    Full text link
    In this paper we consider a simplified two-dimensional scalar model for the formation of mesoscopic domain patterns in martensitic shape-memory alloys at the interface between a region occupied by the parent (austenite) phase and a region occupied by the product (martensite) phase, which can occur in two variants (twins). The model, first proposed by Kohn and Mueller, is defined by the following functional: E(u)=βu(0,)H1/2([0,h])2+0Ldx0hdy(ux2+ϵuyy){\cal E}(u)=\beta||u(0,\cdot)||^2_{H^{1/2}([0,h])}+ \int_{0}^{L} dx \int_0^h dy \big(|u_x|^2 + \epsilon |u_{yy}| \big) where u:[0,L]×[0,h]Ru:[0,L]\times[0,h]\to R is periodic in yy and uy=±1u_y=\pm 1 almost everywhere. Conti proved that if βϵL/h2\beta\gtrsim\epsilon L/h^2 then the minimal specific energy scales like min{(ϵβ/L)1/2,(ϵ/L)2/3}\sim \min\{(\epsilon\beta/L)^{1/2}, (\epsilon/L)^{2/3}\}, as (ϵ/L)0(\epsilon/L)\to 0. In the regime (ϵβ/L)1/2(ϵ/L)2/3(\epsilon\beta/L)^{1/2}\ll (\epsilon/L)^{2/3}, we improve Conti's results, by computing exactly the minimal energy and by proving that minimizers are periodic one-dimensional sawtooth functions.Comment: 29 pages, 3 figure
    corecore