2,604 research outputs found

    Ant Colony Optimisation for Exploring Logical Gene-Gene Associations in Genome Wide Association Studies.

    Get PDF
    In this paper a search for the logical variants of gene-gene interactions in genome-wide association study (GWAS) data using ant colony optimisation is proposed. The method based on stochastic algorithms is tested on a large established database from the Wellcome Trust Case Control Consortium and is shown to discover logical operations between combinations of single nucleotide polymorphisms that can discriminate Type II diabetes. A variety of logical combinations are explored and the best discovered associations are found within reasonable computational time and are shown to be statistically significantThis study makes use of data generated by the Wellcome Trust Case Control Consortium. A full list of the investigators who contributed to the generation of the data is available from http://www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 076113. The work contained in this paper was funded by an EPSRC First Grant (EP/J007439/1) and we acknowledge their kind support

    Subset-Based Ant Colony Optimisation for the Discovery of Gene-Gene Interactions in Genome Wide Association Studies

    Get PDF
    In this paper an ant colony optimisation approach for the discovery of gene-gene interactions in genome-wide association study (GWAS) data is proposed. The subset-based approach includes a novel encoding mechanism and tournament selection to analyse full scale GWAS data consisting of hundreds of thousands of variables to discover associations between combinations of small DNA changes and Type II diabetes. The method is tested on a large established database from the Wellcome Trust Case Control Consortium and is shown to discover combinations that are statistically significant and biologically relevant within reasonable computational time.The work contained in this paper was supported by an EPSRC First Grant (EP/J007439/1). This study makes use of data generated by the Wellcome Trust Case Control Consortium. A full list of the inves- tigators who contributed to the generation of the data is available from http://www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 076113

    Coanalysis of GWAS with eQTLs reveals disease-tissue associations.

    Get PDF
    Expression quantitative trait loci (eQTL), or genetic variants associated with changes in gene expression, have the potential to assist in interpreting results of genome-wide association studies (GWAS). eQTLs also have varying degrees of tissue specificity. By correlating the statistical significance of eQTLs mapped in various tissue types to their odds ratios reported in a large GWAS by the Wellcome Trust Case Control Consortium (WTCCC), we discovered that there is a significant association between diseases studied genetically and their relevant tissues. This suggests that eQTL data sets can be used to determine tissues that play a role in the pathogenesis of a disease, thereby highlighting these tissue types for further post-GWAS functional studies

    A Powerful Approach to Sub-Phenotype Analysis in Population-Based Genetic Association Studies

    Get PDF
    The ultimate goal of genome-wide association (GWA) studies is to identify genetic variants contributing effects to complex phenotypes in order to improve our understanding of the biological architecture underlying the trait. One approach to allow us to meet this challenge is to consider more refined sub-phenotypes of disease, defined by pattern of symptoms, for example, which may be physiologically distinct, and thus may have different underlying genetic causes. The disadvantage of sub-phenotype analysis is that large disease cohorts are sub-divided into smaller case categories, thus reducing power to detect association. To address this issue, we have developed a novel test of association within a multinomial regression modeling framework, allowing for heterogeneity of genetic effects between sub-phenotypes. The modeling framework is extremely flexible, and can be generalized to any number of distinct sub-phenotypes. Simulations demonstrate the power of the multinomial regression-based analysis over existing methods when genetic effects differ between sub-phenotypes, with minimal loss of power when these effects are homogenous for the unified phenotype. Application of the multinomial regression analysis to a genome-wide association study of type 2 diabetes, with cases categorized according to body mass index, highlights previously recognized differential mechanisms underlying obese and non-obese forms of the disease, and provides evidence of a potential novel association that warrants follow-up in independent replication cohorts

    Robust Tests in Genome-Wide Scans under Incomplete Linkage Disequilibrium

    Full text link
    Under complete linkage disequilibrium (LD), robust tests often have greater power than Pearson's chi-square test and trend tests for the analysis of case-control genetic association studies. Robust statistics have been used in candidate-gene and genome-wide association studies (GWAS) when the genetic model is unknown. We consider here a more general incomplete LD model, and examine the impact of penetrances at the marker locus when the genetic models are defined at the disease locus. Robust statistics are then reviewed and their efficiency and robustness are compared through simulations in GWAS of 300,000 markers under the incomplete LD model. Applications of several robust tests to the Wellcome Trust Case-Control Consortium [Nature 447 (2007) 661--678] are presented.Comment: Published in at http://dx.doi.org/10.1214/09-STS314 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Simultaneous Bayesian analysis of contingency tables in genetic association studies

    Get PDF
    Genetic association studies lead to simultaneous categorical data analysis. The sample for every genetic locus consists of a contingency table containing the numbers of observed genotype-phenotype combinations. Under case-control design, the row counts of every table are identical and fixed, while column counts are random. The aim of the statistical analysis is to test independence of the phenotype and the genotype at every locus. We present an objective Bayesian methodology for these association tests, utilizing the Bayes factor proposed by Good (1976) and Crook and Good (1980). It relies on the conjugacy of Dirichlet and multinomial distributions, where the hyperprior for the Dirichlet parameter is log-Cauchy. Being based on the likelihood principle, the Bayesian tests avoid looping over all tables with given marginals. Hence, their computational burden does not increase with the sample size, in contrast to frequentist exact tests. Making use of data generated by The Wellcome Trust Case Control Consortium (2007), we illustrate that the ordering of the Bayes factors shows a good agreement with that of frequentist p-values. Furthermore, we deal with specifying prior probabilities for the validity of the null hypotheses, by taking linkage disequilibrium structure into account and exploiting the concept of effective numbers of tests. Application of a Bayesian decision theoretic multiple test procedure to The Wellcome Trust Case Control Consortium (2007) data illustrates the proposed methodology. Finally, we discuss two methods for reconciling frequentist and Bayesian approaches to the multiple association test problem for contingency tables in genetic association studies

    Recessive mutations in the cancer gene <i>Ataxia Telangiectasia Mutated (ATM)</i>, at a locus previously associated with metformin response, cause dysglycaemia and insulin resistance

    Get PDF
    Aim: To investigate glucose and insulin metabolism in participants with ataxia telangiectasia in the absence of a diagnosis of diabetes. Methods: A standard oral glucose tolerance test was performed in participants with ataxia telangiectasia (n = 10) and in a control cohort (n = 10). Serial glucose and insulin measurements were taken to permit cohort comparisons of glucose‐insulin homeostasis and indices of insulin secretion and sensitivity. Results: During the oral glucose tolerance test, the 2‐h glucose (6.75 vs 4.93 mmol/l; P = 0.029), insulin concentrations (285.6 vs 148.5 pmol/l; P = 0.043), incremental area under the curve for glucose (314 vs 161 mmol/l/min; P = 0.036) and incremental area under the curve for insulin (37,720 vs 18,080 pmol/l/min; P = 0.03) were higher in participants with ataxia telangiectasia than in the controls. There were no significant differences between groups in fasting glucose, insulin concentrations or insulinogenic index measurement (0.94 vs 0.95; P = 0.95). The Matsuda index, reflecting whole‐body insulin sensitivity, was lower in participants with ataxia telangiectasia (5.96 vs 11.03; P = 0.019) than in control subjects. Conclusions: Mutations in Ataxia Telangiectasia Mutated (ATM) that cause ataxia telangiectasia are associated with elevated glycaemia and low insulin sensitivity in participants without diabetes. This indicates a role of ATM in glucose and insulin metabolic pathway

    A Genome-Wide Homozygosity Association Study Identifies Runs of Homozygosity Associated with Rheumatoid Arthritis in the Human Major Histocompatibility Complex

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with a polygenic mode of inheritance. This study examined the hypothesis that runs of homozygosity (ROHs) play a recessive-acting role in the underlying RA genetic mechanism and identified RA-associated ROHs. Ours is the first genome-wide homozygosity association study for RA and characterized the ROH patterns associated with RA in the genomes of 2,000 RA patients and 3,000 normal controls of the Wellcome Trust Case Control Consortium. Genome scans consistently pinpointed two regions within the human major histocompatibility complex region containing RA-associated ROHs. The first region is from 32,451,664 bp to 32,846,093 bp (−log10(p)>22.6591). RA-susceptibility genes, such as HLA-DRB1, are contained in this region. The second region ranges from 32,933,485 bp to 33,585,118 bp (−log10(p)>8.3644) and contains other HLA-DPA1 and HLA-DPB1 genes. These two regions are physically close but are located in different blocks of linkage disequilibrium, and ∼40% of the RA patients' genomes carry these ROHs in the two regions. By analyzing homozygote intensities, an ROH that is anchored by the single nucleotide polymorphism rs2027852 and flanked by HLA-DRB6 and HLA-DRB1 was found associated with increased risk for RA. The presence of this risky ROH provides a 62% accuracy to predict RA disease status. An independent genomic dataset from 868 RA patients and 1,194 control subjects of the North American Rheumatoid Arthritis Consortium successfully validated the results obtained using the Wellcome Trust Case Control Consortium data. In conclusion, this genome-wide homozygosity association study provides an alternative to allelic association mapping for the identification of recessive variants responsible for RA. The identified RA-associated ROHs uncover recessive components and missing heritability associated with RA and other autoimmune diseases
    corecore