8 research outputs found

    MARS OXYGEN GREEN LINE DAYGLOW FROM NOMAD/UVIS AND MODEL COMPARISON

    Full text link
    The UVIS (UV and Visible Spectrometer) channel of the NOMAD (Nadir and Occultation for MArs Discovery) spectrometer onboard the ExoMars Trace Gas Orbiter performs limb observations of the dayside of the Mars atmosphere in both the visible and the ultraviolet domains since April 2019. The recently discovered visible emissions of the oxygen green line at 557.7 nm has here been investigated. The variations of the limb profile of this emission are studied over seasons. These average limb profiles are compared to photochemical model simulations with MAVEN/EUVM solar flux and the LMD GCM as inputs of the model. The global shape of the profile and the intensities are generally well reproduced. However, the peak altitude can sometimes be underestimated by the model and needs an adjustment of the CO2 density to reproduce the observations. We also compare the variations of the green line intensities over some individual UVIS limb tracking observations (observations of the atmosphere at a quasi-constant altitude) to model simulations and demonstrate a very good agreement. Finally, we show that the intensity and altitude of the lower emission peak are correlated with the solar Ly-α flux as expected from the theory of its production

    Martian atmospheric temperature and density profiles during the 1st year of NOMAD/TGO solar occultation measurements

    Get PDF
    We present vertical profiles of temperature and density from solar occultation (SO) observations by the “Nadir and Occultation for Mars Discovery” (NOMAD) spectrometer on board the Trace Gas Orbiter (TGO) during its first operational year, which covered the second half of Mars Year 34. We used calibrated transmittance spectra in 380 scans, and apply an in-house pre-processing to clean data systematics. Temperature and CO2 profiles up to about 90 km, with consistent hydrostatic adjustment, are obtained, after adapting an Earth-tested retrieval scheme to Mars conditions. Both pre-processing and retrieval are discussed to illustrate their performance and robustness. Our results reveal the large impact of the MY34 Global Dust Storm (GDS), which warmed the atmosphere at all altitudes. The large GDS aerosols opacity limited the sounding of tropospheric layers. The retrieved temperatures agree well with global climate models (GCM) at tropospheric altitudes, but NOMAD mesospheric temperatures are wavier and globally colder by 10 K in the perihelion season, particularly during the GDS and its decay phase. We observe a warm layer around 80 km during the Southern Spring, especially in the Northern Hemisphere morning terminator, associated to large thermal tides, significantly stronger than in the GCM. Cold mesospheric pockets, close to CO2 condensation temperatures, are more frequently observed than in the GCM. NOMAD CO2 densities show oscillations upon a seasonal trend that track well the latitudinal variations expected. Results uncertainties and suggestions to improve future data re-analysis are briefly discussed

    Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission

    Full text link
    peer reviewedThe NOMAD spectrometer suite on the ExoMars Trace Gas Orbiter will map the composition and distribution of Mars’atmospheric trace species in unprecedented detail, fulfilling many of the scientific objectives of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument is a combination of three channels, covering a spectral range from the UV to the IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and how these objectives have influenced the design of the channels. We also discuss the expected performance of the instrument in terms of coverage and detection sensitivity

    NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance

    Get PDF
    International audienceThe NOMAD (“Nadir and Occultation for MArs Discovery”) spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars’ atmosphere, with a particular focus on trace gases, clouds and dust. The detection sensitivity for trace gases is considerably improved compared to previous Mars missions, compliant with the science objectives of the TGO mission. This will allow for a major leap in our knowledge and understanding of the Martian atmospheric composition and the related physical and chemical processes. The instrument is a combination of three spectrometers, covering a spectral range from the UV to the mid-IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and explain the technical principles of the three spectrometers. We also discuss the expected performance of the instrument in terms of spatial and temporal coverage and detection sensitivity
    corecore