421 research outputs found
Rationale for UV-filtered clover fermions
We study the contributions Sigma_0 and Sigma_1, proportional to a^0 and a^1,
to the fermion self-energy in Wilson's formulation of lattice QCD with
UV-filtering in the fermion action. We derive results for m_{crit} and the
renormalization factors Z_S, Z_P, Z_V, Z_A to 1-loop order in perturbation
theory for several filtering recipes (APE, HYP, EXP, HEX), both with and
without a clover term. The perturbative series is much better behaved with
filtering, in particular tadpole resummation proves irrelevant. Our
non-perturbative data for m_{crit} and Z_A/(Z_m*Z_P) show that the combination
of filtering and clover improvement efficiently reduces the amount of chiral
symmetry breaking -- we find residual masses am_{res}=O(10^{-2}).Comment: 25 pages, 4 figures; v2: typo in eqn. (37) fixed [agrees with
published version
Heavy-light quark pseudoscalar and vector mesons at finite temperature
The temperature dependence of the mass, leptonic decay constant, and width of
heavy-light quark peseudoscalar and vector mesons is obtained in the framework
of thermal Hilbert moment QCD sum rules. The leptonic decay constants of both
pseudoscalar and vector mesons decrease with increasing , and vanish at a
critical temperature , while the mesons develop a width which increases
dramatically and diverges at , where is the temperature for
chiral-symmetry restoration. These results indicate the disappearance of
hadrons from the spectral function, which then becomes a smooth function of the
energy. This is interpreted as a signal for deconfinement at . In
contrast, the masses show little dependence on the temperature, except very
close to , where the pseudoscalar meson mass increases slightly by 10-20
%, and the vector meson mass decreases by some 20-30
Small-x QCD studies with CMS at the LHC
The capabilities of the CMS experiment to study the low-x parton structure
and QCD evolution in the proton and the nucleus at LHC energies are presented
through four different measurements, to be carried out in Pb-Pb at sqrt(s_NN) =
5.5 TeV: (i) the charged hadron rapidity density and (ii) the
ultraperipheral (photo)production of Upsilon; and in p-p at sqrt(s) = 14 TeV:
(iii) inclusive forward jets and (iv) Mueller-Navelet dijets (separated by
8).Comment: Quark Matter'06 Proceedings. To appear in J.Phys.
The Minimal Phantom Sector of the Standard Model: Higgs Phenomenology and Dirac Leptogenesis
We propose the minimal, lepton-number conserving, SU(3)xSU(2)xU(1)
gauge-singlet, or phantom, extension of the Standard Model. The extension is
natural in the sense that all couplings are of O(1) or forbidden due to a
phantom sector global U(1)_D symmetry, and basically imitates the standard
Majorana see-saw mechanism. Spontaneous breaking of the U(1)_D symmetry
triggers consistent electroweak gauge symmetry breaking only if it occurs at a
scale compatible with small Dirac neutrino masses and baryogenesis through
Dirac leptogenesis. Dirac leptogenesis proceeds through the usual
out-of-equilibrium decay scenario, leading to left and right-handed neutrino
asymmetries that do not fully equilibrate after they are produced. The model
contains two physical Higgs bosons and a massless Goldstone boson. The
existence of the Goldstone boson suppresses the Higgs to bb branching ratio and
instead the Higgs bosons will mainly decay to invisible Goldstone and/or to
visible vector boson pairs. In a representative scenario, we estimate that with
30 fb^-1 integrated luminosity, the LHC could discover this invisibly decaying
Higgs, with mass ~120 GeV. At the same time a significantly heavier, partner
Higgs boson with mass ~210 GeV could be found through its vector boson decays.
Electroweak constraints as well as astrophysical and cosmological implications
are analysed and discussed.Comment: 21 pages, 4 figures. Corrected typos and added references. To appear
in JHE
Chiral bosonization for non-commutative fields
A model of chiral bosons on a non-commutative field space is constructed and
new generalized bosonization (fermionization) rules for these fields are given.
The conformal structure of the theory is characterized by a level of the
Kac-Moody algebra equal to where is the
non-commutativity parameter and chiral bosons living in a non-commutative
fields space are described by a rational conformal field theory with the
central charge of the Virasoro algebra equal to 1. The non-commutative chiral
bosons are shown to correspond to a free fermion moving with a speed equal to where is the speed of light. Lorentz
invariance remains intact if is rescaled by . The
dispersion relation for bosons and fermions, in this case, is given by .Comment: 16 pages, JHEP style, version published in JHE
On the detectability of the CMSSM light Higgs boson at the Tevatron
We examine the prospects of detecting the light Higgs h^0 of the Constrained
MSSM at the Tevatron. To this end we explore the CMSSM parameter space with
\mu>0, using a Markov Chain Monte Carlo technique, and apply all relevant
collider and cosmological constraints including their uncertainties, as well as
those of the Standard Model parameters. Taking 50 GeV < m_{1/2}, m_0 < 4 TeV,
|A_0| < 7 TeV and 2 < tan(beta) < 62 as flat priors and using the formalism of
Bayesian statistics we find that the 68% posterior probability region for the
h^0 mass lies between 115.4 GeV and 120.4 GeV. Otherwise, h^0 is very similar
to the Standard Model Higgs boson. Nevertheless, we point out some enhancements
in its couplings to bottom and tau pairs, ranging from a few per cent in most
of the CMSSM parameter space, up to several per cent in the favored region of
tan(beta)\sim 50 and the pseudoscalar Higgs mass of m_A\lsim 1 TeV. We also
find that the other Higgs bosons are typically heavier, although not
necessarily much heavier. For values of the h^0 mass within the 95% probability
range as determined by our analysis, a 95% CL exclusion limit can be set with
about 2/fb of integrated luminosity per experiment, or else with 4/fb (12/fb) a
3 sigma evidence (5 sigma discovery) will be guaranteed. We also emphasize that
the alternative statistical measure of the mean quality-of-fit favors a
somewhat lower Higgs mass range; this implies even more optimistic prospects
for the CMSSM light Higgs search than the more conservative Bayesian approach.
In conclusion, for the above CMSSM parameter ranges, especially m_0, either
some evidence will be found at the Tevatron for the light Higgs boson or, at a
high confidence level, the CMSSM will be ruled out.Comment: JHEP versio
Selection of Bread Wheat for Low Grain Cadmium Concentration at the Seedling Stage Using Hydroponics versus Molecular Markers
The excessive accumulation of Cd in harvested crops grown on high-Cd soils has increased public concerns for food safety. Due to the high consumption of bread wheat (Triticum aestivum L.) per capita, high concentrations of Cd in wheat grain can significantly affect human health. Breeding is a promising way to reduce grain Cd concentration. However, a lack of efficient selection methods impedes breeding for low grain Cd concentration in bread wheat. In this study, a recombinant inbred population segregating for grain Cd concentration was used to assess the efficacy of two selection methods for decreasing grain Cd concentration in bread wheat: a hydroponic selection method used shoot Cd concentration in 2-wk-old seedlings growing in Cd-containing medium, and a marker-based selection method using markers linked to heavy metal transporting P1B-ATPase 3 (HMA3), the gene underlying Cdu1. Both methods effectively selected low-Cd lines. The HMA3-linked marker-based selection was superior to hydroponic selection in terms of both simplicity and response to selection. The HMA3-linked markers explained 20% of the phenotypic variation in grain Cd concentration with an additive effect of 0.014 mg kgâ1. The hydroponic selection and marker-based selection may target two different and independent processes controlling grain Cd accumulation, and they had no effect on grain Zn and Fe concentrations. The ALMT1-UPS4 marker associated with Al tolerance was not associated with grain Cd concentration but increased grain Zn and Fe concentrations. The 193-bp allele of the Rht8-associated marker, GWM261, was associated with increased grain Cd concentration
Measuring the Higgs Sector
If we find a light Higgs boson at the LHC, there should be many observable
channels which we can exploit to measure the relevant parameters in the Higgs
sector. We use the SFitter framework to map these measurements on the parameter
space of a general weak-scale effective theory with a light Higgs state of mass
120 GeV. Our analysis benefits from the parameter determination tools and the
error treatment used in new--physics searches, to study individual parameters
and their error bars as well as parameter correlations.Comment: 45 pages, Journal version with comments from refere
Quantum Zeno Effect and Light-Dark Periods for a Single Atom
The quantum Zeno effect (QZE) predicts a slow-down of the time development of
a system under rapidly repeated ideal measurements, and experimentally this was
tested for an ensemble of atoms using short laser pulses for non-selective
state measurements. Here we consider such pulses for selective measurements on
a single system. Each probe pulse will cause a burst of fluorescence or no
fluorescence. If the probe pulses were strictly ideal measurements, the QZE
would predict periods of fluorescence bursts alternating with periods of no
fluorescence (light and dark periods) which would become longer and longer with
increasing frequency of the measurements. The non-ideal character of the
measurements is taken into account by incorporating the laser pulses in the
interaction, and this is used to determine the corrections to the ideal case.
In the limit, when the time between the laser pulses goes to zero, no freezing
occurs but instead we show convergence to the familiar macroscopic light and
dark periods of the continuously driven Dehmelt system. An experiment of this
type should be feasible for a single atom or ion in a trapComment: 16 pages, LaTeX, a4.sty; to appear in J. Phys.
Particle Acceleration in Cosmic Sites - Astrophysics Issues in our Understanding of Cosmic Rays
Laboratory experiments to explore plasma conditions and stimulated particle
acceleration can illuminate aspects of the cosmic particle acceleration
process. Here we discuss the cosmic-ray candidate source object variety, and
what has been learned about their particle-acceleration characteristics. We
identify open issues as discussed among astrophysicists. -- The cosmic ray
differential intensity spectrum is a rather smooth power-law spectrum, with two
kinks at the "knee" (~10^15 eV) and at the "ankle" (~3 10^18 eV). It is unclear
if these kinks are related to boundaries between different dominating sources,
or rather related to characteristics of cosmic-ray propagation. We believe that
Galactic sources dominate up to 10^17 eV or even above, and the extragalactic
origin of cosmic rays at highest energies merges rather smoothly with Galactic
contributions throughout the 10^15--10^18 eV range. Pulsars and supernova
remnants are among the prime candidates for Galactic cosmic-ray production,
while nuclei of active galaxies are considered best candidates to produce
ultrahigh-energy cosmic rays of extragalactic origin. Acceleration processes
are related to shocks from violent ejections of matter from energetic sources
such as supernova explosions or matter accretion onto black holes. Details of
such acceleration are difficult, as relativistic particles modify the structure
of the shock, and simple approximations or perturbation calculations are
unsatisfactory. This is where laboratory plasma experiments are expected to
contribute, to enlighten the non-linear processes which occur under such
conditions.Comment: accepted for publication in EPJD, topical issue on Fundamental
physics and ultra-high laser fields. From review talk at "Extreme Light
Infrastructure" workshop, Sep 2008. Version-2 May 2009: adjust some wordings
and references at EPJD proofs stag
- âŠ