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Small-x QCD studies with CMS at the LHC
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Abstract. The capabilities of the CMS experiment to study the low-x parton structure and
QCD evolution in the proton and the nucleus at LHC energies are presented through four
different measurements, to be carried out in Pb-Pb at

√
sNN = 5.5 TeV: (i) the charged hadron

rapidity densitydNch/dη and (ii) the ultraperipheral (photo)production ofΥ; and in p-p at√
s = 14 TeV: (iii) inclusive forward jets and (iv) Mueller-Navelet dijets (separated by∆η & 8).

Introduction

At high energies, the cross-sections of allhadronic objects (protons, nuclei, or even photons
“fluctuating” into qq̄ vector states) are dominated by scatterings involving gluons. Gluons
clearly outnumber quarks in the small momentum fraction (low-x) range of the parton dis-
tribution functions (PDFs) as a consequence of the QCD parton splitting probabilities de-
scribed by the DGLAP [1] and BFKL [2] evolution equations. The fast growth of the gluon
densitiesxG(x,Q2) for decreasingx conspicuously observed in DISep at HERA [3], can-
not however continue indefinitely since this would violate unitarity even for scatterings with
Q2≫ Λ2

QCD. For small enoughx values, gluons must start to recombine in a process known
as gluon saturation [4]. This phenomenon occurs when the size occupied by the partons be-
comes similar to the size of the hadronπR2, or in terms of thesaturation momentum Qs

when: Q2
. Q2

s(x) ≃ αs xG(x,Q2)/πR2. Qs grows with the numberA of nucleons in the
“target”, the collision energy

√
s, and the rapidity of the gluony = ln(1/x), according to:

Q2
s ∼ A1/3 x−0.3 ∼ A1/3(

√
s)0.3 ∼ A1/3e0.3y. TheA dependence implies that, at equal energies,

saturation effects will be enhanced by factors as large asA1/3 ≈ 6 in a heavy nucleus (A =
208 for Pb) compared to protons. Theoretically, the regime of low-x QCD can be effectively
described in the “Color Glass Condensate” (CGC) framework,where all gluon fusions and
multiple scatterings are “resummed” into classical high-density gluon wavefunctions [5]. The
corresponding evolution is given in this case by the BK/JIMWLK [6] non-linear equations.

Experimentally, the most direct way to access the low-x PDFs in hadronic collisions is by
measuring perturbative probes (heavy-Q, jets, high-pT hadrons, promptγ, ...) at large

√
s

andforward rapidities [7]. For a 2→ 2 parton scattering, theminimum x probed in a process
with a particle of momentumpT produced at pseudo-rapidityη, is xmin

2 = xT e−η/(2− xT eη)
wherexT = 2pT /

√
s. Thus,xmin

2 decreases by a factor of∼10 every 2 units of rapidity. The
experimental capabilities of the CMS experiment are extremely well adapted for the study of
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low-x phenomena with proton and ion beams. The acceptance of the CMS/TOTEM system
is the largest ever available in a collider, and the detectoris designed to measure different
particles with excellent momentum resolution [8]: jets (|η| < 6.6), γ ande± (|η| < 3), muons
(|η| < 2.5), hadrons (|η| < 6.6), plus neutrals in the Zero-Degree Calorimeters (ZDCs,|η| >
8.3). We present a selection of four observables measurablein CMS which are sensitive to
parton saturation effects in the proton and nucleus wave-functions at LHC energies. Other
relevant measurements (e.g. forward Drell-Yan in p-p at 14 TeV) are discussed in [9].

1. Measurements in PbPb collisions at
√

sNN = 5.5 TeV

(1) Charged hadron PbPb rapidity density: dNch/dη

In high-energy heavy-ion collisions, thehadron rapidity densitydN/dη is directly related to
the number of initially releasedpartons at a givenη. CGC approaches which effectively take
into account a reduced initial parton flux in the nuclear PDFs, reproduce successfully the
absolute hadron yields (as well as their centrality and

√
sNN dependences) at SPS – RHIC

energies [10, 11]. At LHC, the expected PbPb multiplicitiesaredN/dη|η=0 ≈ 2000 (Fig. 1,
left). CMS simulation studies from hit counting in the innermost Si pixel layer (|η| < 2.5)
indicate that the occupancy remains less than 2% and that, onan event-by-event basis, the
reconstructeddNch/dη is within∼2% of the true primary multiplicity (Fig. 1, right) [12].
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Figure 1. Left: Model predictions fordN/dη in central PbPb at the LHC [10, 13]. Right:
Range of particle rapidities covered by CMS (Si tracker, HF,CASTOR) and TOTEM (T1, T2
trackers). The PbPb distribution of primary simulated tracks within|η|< 2.5 (black dots)
is compared to the reconstructed hits in the first layer of theSi tracker (red crosses) [12].

(2) Υ photoproduction in ultra-peripheral PbPb (→ γPb)→ Υ + Pb∗ Pb(∗) collisions

Ultraperipheral collisions (UPCs) of heavy ions generate strong electromagnetic fields
(equivalent to a flux of quasi-real photons) which can be usedto study xG(x,Q2) via QQ̄
photoproduction [14]. Lead beams at 2.75 TeV have Lorentz factorsγ = 2930 leading to
maximum photon energiesωmax ≈ γ/R ∼ 100 GeV (for a nuclear radiusR = 6.5 fm) and c.m.
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energiesWmax
γγ ≈ 160 GeV andWmax

γA ≈ 1 TeV. Thex values probed inγPb→ΥPb processes at

y = 2.5 can be as low asx ∼ 10−4. Full simulation+reconstruction [12] of input distributions
from theMC [15] show that CMS can measureΥ→ e+e−, µ+µ− within |η| < 2.5, in
UPCs tagged with neutrons detected in the ZDCs. Fig. 2 shows the reconstructeddN/dml+ l−

around theΥ mass for 0.5 nb−1 integrated PbPb luminosity. With a total yield of∼ 400Υ,
detailedpT ,η studies can be carried out, to constrain the low-x gluon density in the Pb nucleus.
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Figure 2. Expectede+e− (left), µ+µ− (right) invariant mass distributions fromγPb→ ΥPb⋆

(Υ→ l+ l−, signal) andγγ→ l+ l− (background) in UPC PbPb at
√

sNN = 5.5 TeV in CMS.

2. Measurements in pp collisions at
√

s =14 TeV

(3) Inclusive forward jet production: pp→ jet+X, with 3< |ηjet| < 5

Jet measurements at Tevatron have provided valuable information on the proton PDFs. At 14
TeV, the production of jets withET ≈ 20–100 GeV in the CMS forward calorimeters (HF and
CASTOR) probes the PDFs down tox2 ≈ 10−6 [7]. Figure 3-left shows the single inclusive
jet spectrum in both HFs (3< |η| <5) expected for a short first run with just 1 pb−1 integrated
luminosity. The spectrum has been obtained from a preliminary study using 6.403 with
jet reconstruction at theparticle-level (i.e. no detector effects are included apart from the HF
tower η− φ granularity) [9]. Although at such lowET’s systematic uncertainties can be as
large as∼30%, the available statistics for this study is very high.

(4) Mueller-Navelet dijets: pp→ jet1+jet2, with large ∆η = η2−η1

Inclusive dijet production at large pseudorapidity intervals – Müller-Navelet (MN) jets –
has been considered an excellent testing ground for BFKL [17] and non-linear QCD [18]
evolutions. The large rapidity separation between partonsenhances the available longitudinal
momentum phase space for BFKL radiation. Gluon saturation effects are expected to reduce
the (pure BFKL) MN cross section by a factor of∼2 for jets separated by∆η≈ 9 [18]. In order
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Figure 3. Expected jet yields in pp at
√

s = 14 TeV (1 pb−1) obtained from 6.403 at
the particle-level (no full detector response, underlying-event or hadronization corrections).
Left: Single inclusive jets in HF (3< |η| < 5) (compared to a NLO calculation with scaleµ
= ET [16]). Right: Dijets separated by∆η = 8–9 with the Müller-Navelet kinematics cuts
described in the text, as a function ofET ≡

√

ET ,1×ET ,2.

to estimate the expected statistics for a short run without pile-up (1 pb−1), we have selected the
 events which pass the MN kinematics cuts:|ET,1−ET,2| < 2.5 GeV, |η1| − |η2| < 0.25,
and∆η = 6 – 10 [9]. Figure 3-right shows the results for∆η = 8–9. The expected dijet yields
for thisη separation indicate that these studies are clearly statistically feasible at the LHC.
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