228 research outputs found

    An integrated national scale SARS-CoV-2 genomic surveillance network.

    Get PDF
    The Coronavirus Disease 2019 (COVID-19) Genomics UK Consortium (COG-UK) was launched in March, 2020, with £20 million support from UK Research and Innovation, the UK Department of Health and Social Care, and Wellcome Trust. The goal of this consortium is to sequence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for up to 230 000 patients, health-care workers, and other essential workers in the UK with COVID-19, which will help to enable the tracking of SARS-CoV-2 transmission, identify viral mutations, and integrate with health data to assess how the viral genome interacts with cofactors and consequences of COVID-19

    Spatial Growth Rate of Emerging SARS-CoV-2 Lineages in England, September 2020–December 2021

    Get PDF
    This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020-December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to routine assessments of the growth of emerging SARS-CoV-2 lineages in a defined population

    CLIMB-COVID: continuous integration supporting decentralised sequencing for SARS-CoV-2 genomic surveillance.

    Get PDF
    Funder: Wellcome TrustIn response to the ongoing SARS-CoV-2 pandemic in the UK, the COVID-19 Genomics UK (COG-UK) consortium was formed to rapidly sequence SARS-CoV-2 genomes as part of a national-scale genomic surveillance strategy. The network consists of universities, academic institutes, regional sequencing centres and the four UK Public Health Agencies. We describe the development and deployment of CLIMB-COVID, an encompassing digital infrastructure to address the challenge of collecting and integrating both genomic sequencing data and sample-associated metadata produced across the COG-UK network

    Persistent SARS-CoV-2 infection in immunocompromised patients facilitates rapid viral evolution: Retrospective cohort study and literature review

    Get PDF
    BACKGROUND: Most patients with SARS-CoV-2 are non-infectious within 2 weeks, though viral RNA may remain detectable for weeks. However there are reports of persistent SARS-CoV-2 infection, with viable virus and ongoing infectivity months after initial detection. Beyond individuals, viral evolution during persistent infections may be accelerated, driving emergence of mutations associated with viral variants of concern. These patients often do not meet inclusion criteria for clinical trials, meaning clinical and virologic characteristics, and optimal management strategies are poorly evidence-based. METHODS: We analysed cases of SARS-CoV-2 infection from a regional testing laboratory in South-West England between March 2020 and December 2021, with at least two SARS-CoV-2 positive samples separated by ≥ 56 days were identified. Excluding those with confirmed or likely re-infection, we identified patients with persistent infection, characterised by an ongoing clinical syndrome consistent with COVID-19 alongside monophyletic viral lineage of SARS-CoV-2. We examined clinical and virologic characteristics, treatment, and outcome. We further performed a literature review investigating cases of persistent SARS-CoV-2 infection, reviewing patient characteristics and treatment. RESULTS: We identified six patients with persistent SARS-CoV-2 infection. All were hypogammaglobulinaemic and had underlying haematological malignancy, with four having received B-cell depleting therapy. Evidence of viral evolution, including accrual of mutations associated with variants of concern, was demonstrated in five cases. Four patients ultimately cleared SARS-CoV-2. In two patients, clearance followed treatment with casirivimab/imdevimab. Both survived beyond thirty days following viral clearance, having experienced infections of 305- and 269-days duration respectively, after failed attempts at clearance with alternative therapies. We found 60 cases of confirmed persistent infection in the literature, with a further 31 probable cases. Of those, 80% of patients treated with monoclonal antibodies cleared SARS-CoV-2, and none died. CONCLUSION: Haematological malignancy and patients receiving B-cell depleting therapies represent key groups at risk of persistent SARS-CoV-2 infection. Throughout persistent infection, SARS-CoV-2 can evolve rapidly, giving rise to significant mutations, including those implicated in variants of concern. Monoclonal antibodies appear to be a promising therapeutic option, potentially in combination with antivirals, crucial for individuals, and for public health

    CoronaHiT: high-throughput sequencing of SARS-CoV-2 genomes.

    Get PDF
    We present CoronaHiT, a platform and throughput flexible method for sequencing SARS-CoV-2 genomes (≤ 96 on MinION or > 96 on Illumina NextSeq) depending on changing requirements experienced during the pandemic. CoronaHiT uses transposase-based library preparation of ARTIC PCR products. Method performance was demonstrated by sequencing 2 plates containing 95 and 59 SARS-CoV-2 genomes on nanopore and Illumina platforms and comparing to the ARTIC LoCost nanopore method. Of the 154 samples sequenced using all 3 methods, ≥ 90% genome coverage was obtained for 64.3% using ARTIC LoCost, 71.4% using CoronaHiT-ONT and 76.6% using CoronaHiT-Illumina, with almost identical clustering on a maximum likelihood tree. This protocol will aid the rapid expansion of SARS-CoV-2 genome sequencing globally.The sequencing costs were funded by the COVID-19 Genomics UK (COG-UK) Consortium which is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute

    Protocol for the COG-UK hospital onset COVID-19 infection (HOCI) multicentre interventional clinical study: evaluating the efficacy of rapid genome sequencing of SARS-CoV-2 in limiting the spread of COVID-19 in United Kingdom NHS hospitals

    Get PDF
    Introduction: Nosocomial transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a significant cause of mortality in National Health Service (NHS) hospitals during the coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to evaluate the impact of rapid whole genome sequencing of SARS-CoV-2, supported by a novel probabilistic reporting methodology, to inform infection prevention and control (IPC) practice within NHS hospital settings. / Methods and analysis: COG-UK HOCI (COG-UK Consortium Hospital-Onset COVID-19 Infections study) is a multicentre, prospective, interventional, superiority study. Eligible patients must be admitted to hospital with first confirmed SARS-CoV-2 PCR positive test result >48h from time of admission, where COVID-19 diagnosis was not suspected upon admission. The projected sample size for 14 participating sites covering all study phases over winter-spring 2020/2021 in the United Kingdom is 2,380 patients. The intervention is the return of a sequence report, within 48 hours in one phase (rapid local lab) and within 5-10 days in a second phase (mimicking central lab use), comparing the viral genome from an eligible study participant with others within and outside the hospital site. The primary outcomes are the incidence of Public Health England (PHE)/IPC-defined SARS-CoV-2 hospital-acquired infection during the baseline and two interventional phases, and proportion of hospital-onset cases with genomic evidence of transmission linkage following implementation of the intervention where such linkage was not suspected by initial IPC investigation. Secondary outcomes include incidence of hospital outbreaks, with and without sequencing data; actual and desirable changes to IPC actions; periods of healthcare worker (HCW) absence. A process evaluation using qualitative interviews with HCWs will be conducted alongside the study and analysis, underpinned by iterative programme theory of the sequence report. Health economic analysis will be conducted to determine cost-benefit of the intervention, and whether this leads to economic advantages within the NHS setting. / Ethics and dissemination: The protocol has been approved by the National Research Ethics Service Committee (Cambridge South 20/EE/0118). This manuscript is based on version 5.0 of the protocol. The study findings will be disseminated through peer-reviewed publications

    Recurrent SARS-CoV-2 mutations in immunodeficient patients

    Get PDF
    Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape, or viral packaging optimisation.There is an apparent selective pressure for mutations that aid cell–cell transmission within the host or persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be discounted

    SARS-CoV-2 within-host diversity and transmission

    Get PDF

    The mutational spectrum of SARS-CoV-2 genomic and antigenomic RNA

    Get PDF
    The raw material for viral evolution is provided by intra-host mutations occurring during replication, transcription or post-transcription. Replication and transcription of Coronaviridae proceed through the synthesis of negative-sense ‘antigenomes’ acting as templates for positive-sense genomic and subgenomic RNA. Hence, mutations in the genomes of SARS-CoV-2 and other coronaviruses can occur during (and after) the synthesis of either negative-sense or positive-sense RNA, with potentially distinct patterns and consequences. We explored for the first time the mutational spectrum of SARS-CoV-2 (sub)genomic and anti(sub)genomic RNA. We use a high-quality deep sequencing dataset produced using a quantitative strand-aware sequencing method, controlled for artefacts and sequencing errors, and scrutinized for accurate detection of within-host diversity. The nucleotide differences between negative- and positive-sense strand consensus vary between patients and do not show dependence on age or sex. Similarities and differences in mutational patterns between within-host minor variants on the two RNA strands suggested strand-specific mutations or editing by host deaminases and oxidative damage. We observe generally neutral and slight negative selection on the negative strand, contrasting with purifying selection in ORF1a, ORF1b and S genes of the positive strand of the genome
    corecore