2,696 research outputs found

    Experimental dynamic stiffness and damping of externally pressurized gas-lubricated journal bearings

    Get PDF
    A rigid vertical shaft was operated with known amounts of unbalance at speeds to 30,000 rpm and gas supply pressure ratios to 4.8. From measured amplitude and phase angle data, dynamic stiffness and damping coefficients of the bearings were determined. The measured stiffness was proportional to the supply pressure, while damping was little affected by supply pressure. Damping dropped rapidly as the fractional frequency whirl threshold was approached. A small-eccentricity analysis overpredicted the stiffness by 20 to 70 percent. Predicted damping was lower than measured at low speeds but higher at high speeds

    Use of ERTS-1 data in the educational and applied research programs of agricultural extension

    Get PDF
    There are no author-identified significant results in this report

    Science-based restoration monitoring of coastal habitats, Volume Two: Tools for monitoring coastal habitats

    Get PDF
    Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts

    Estimating the Impacts of Climate Change and Potential Adaptation Strategies on Cereal Grains in the United States

    Get PDF
    Climate change induced alterations from historical patterns of precipitation, temperature, and atmospheric gases as well as increases in the frequency of extreme events is leading to alterations in global cereal production and its spatial distribution. Using a US agricultural sector model, we examine effects and acreage adaptation with an emphasis on wheat and the Pacific Northwest region. Use of a national sector model allows for analysis at the national as well as regional level. Generally, under climate change we find that the incidence of wheat production shifts northward in the Southern Great Plains, westward in Northern Great Plains and eastward in Oregon and Washington, all of which are moves to cooler conditions. Total wheat acreage in the Pacific Northwest is expected to decline from 6 million acres under no climate change to 5.4–5.7 million acres over the study period. Additionally, we consider impacts on price, production, and consumer, producer, and foreign welfare finding losses to consumer welfare and gains to producer welfare with overall losses in surplus. Recommendations are made for future research and alternative ways that adaptation strategies can be integrated into models to predict long-term impacts

    Science-based restoration monitoring of coastal habitats, Volume One: A framework for monitoring plans under the Estuaries and Clean Waters Act of 2000 (Public Law 160-457)

    Get PDF
    Executive Summary: The Estuary Restoration Act of 2000 (ERA), Title I of the Estuaries and Clean Waters Act of 2000, was created to promote the restoration of habitats along the coast of the United States (including the US protectorates and the Great Lakes). The NOAA National Centers for Coastal Ocean Science was charged with the development of a guidance manual for monitoring plans under this Act. This guidance manual, titled Science-Based Restoration Monitoring of Coastal Habitats, is written in two volumes. It provides technical assistance, outlines necessary steps, and provides useful tools for the development and implementation of sound scientific monitoring of coastal restoration efforts. In addition, this manual offers a means to detect early warnings that the restoration is on track or not, to gauge how well a restoration site is functioning, to coordinate projects and efforts for consistent and successful restoration, and to evaluate the ecological health of specific coastal habitats both before and after project completion (Galatowitsch et al. 1998). The following habitats have been selected for discussion in this manual: water column, rock bottom, coral reefs, oyster reefs, soft bottom, kelp and other macroalgae, rocky shoreline, soft shoreline, submerged aquatic vegetation, marshes, mangrove swamps, deepwater swamps, and riverine forests. The classification of habitats used in this document is generally based on that of Cowardin et al. (1979) in their Classification of Wetlands and Deepwater Habitats of the United States, as called for in the ERA Estuary Habitat Restoration Strategy. This manual is not intended to be a restoration monitoring “cookbook” that provides templates of monitoring plans for specific habitats. The interdependence of a large number of site-specific factors causes habitat types to vary in physical and biological structure within and between regions and geographic locations (Kusler and Kentula 1990). Monitoring approaches used should be tailored to these differences. However, even with the diversity of habitats that may need to be restored and the extreme geographic range across which these habitats occur, there are consistent principles and approaches that form a common basis for effective monitoring. Volume One, titled A Framework for Monitoring Plans under the Estuaries and Clean Waters Act of 2000, begins with definitions and background information. Topics such as restoration, restoration monitoring, estuaries, and the role of socioeconomics in restoration are discussed. In addition, the habitats selected for discussion in this manual are briefly described. (PDF contains 116 pages

    Paper Session II-B - 3-Dimensional Feature Mapping Using Spatial Spectral Analysis

    Get PDF
    Orbiter vehicles are routinely exposed to a variety of small scale debris while operating in low earth orbit. Impacts with such debris often result in surface and/or subsurface damage to orbiter windows. Current procedures require windows to be manually inspected for impact damage after each shuttle mission. Once identified, surface damage feature depths are determined by analyzing mold impressions of the damaged areas. Subsurface damage always results in window rejection since the depths of subsurface features are deemed unmeasurable using standard mold impression measurement techniques. This paper presents an automated optical technique for measuring the depth of small scale surface and subsurface damage features in orbiter windows. Test results based on actual orbiter window damage features are also presented
    • …
    corecore