51 research outputs found

    Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau

    Get PDF
    Ontong Java Plateau (OJP) is a huge, completely submerged volcanic edifice that is hypothesized to have formed during large plume melting events ?90 and 120 My ago. It is currently resisting subduction into the North Solomon trench. The size and buoyancy of the plateau along with its history of plume melting and current interaction with a subduction zone are all similar to the characteristics and hypothesized mechanisms of continent formation. However, the plateau is remote, and enigmatic, and its proto-continent potential is debated. We use SS precursors to image seismic discontinuity structure beneath Ontong Java Plateau. We image a velocity increase with depth at 28±4 km consistent with the Moho. In addition, we image velocity decreases at 80±5 km and 282±7 km depth. Discontinuities at 60–100 km depth are frequently observed both beneath the oceans and the continents. However, the discontinuity at 282 km is anomalous in comparison to surrounding oceanic regions; in the context of previous results it may suggest a thick viscous root beneath OJP. If such a root exists, then the discontinuity at 80 km bears some similarity to the mid-lithospheric discontinuities (MLDs) observed beneath continents. One possibility is that plume melting events, similar to that which formed OJP, may cause discontinuities in the MLD depth range. Plume–plate interaction could be a mechanism for MLD formation in some continents in the Archean prior to the onset of subduction

    A pole-to-equator ocean overturning circulation on Enceladus

    Get PDF
    Enceladus is believed to have a saltwater global ocean with a mean depth of at least 30~km, heated from below at the ocean-core interface and cooled at the top, where the ocean loses heat to the icy lithosphere above. This scenario suggests an important role for vertical convection to influence the interior properties and circulation of Enceladus' ocean. Additionally, the ice shell that encompasses the ocean has dramatic meridional thickness variations that, in steady state, must be sustained against processes acting to remove these ice thickness anomalies. One mechanism that would maintain variations in the ice shell thickness involves spatially-separated regions of freezing and melting at the ocean-ice interface. Here, we use an idealized, dynamical ocean model forced by an observationally-guided density forcing at the ocean-ice interface to argue that Enceladus' interior ocean should support a meridional overturning circulation. This circulation establishes an interior density structure that is more complex than in studies that have focused only on convection, including a shallow freshwater lens in the polar regions. Spatially-separated sites of ice formation and melt enable Enceladus to sustain a significant vertical and horizontal stratification, which impacts interior heat transport, and is critical for understanding the relationship between a global ocean and the planetary energy budget. The presence of low salinity layers near the polar ocean-ice interface also influences whether samples measured from the plumes are representative of the global ocean

    A pole-to-equator ocean overturning circulation on Enceladus

    Get PDF
    Enceladus is believed to have a saltwater global ocean with a mean depth of at least 30~km, heated from below at the ocean-core interface and cooled at the top, where the ocean loses heat to the icy lithosphere above. This scenario suggests an important role for vertical convection to influence the interior properties and circulation of Enceladus' ocean. Additionally, the ice shell that encompasses the ocean has dramatic meridional thickness variations that, in steady state, must be sustained against processes acting to remove these ice thickness anomalies. One mechanism that would maintain variations in the ice shell thickness involves spatially-separated regions of freezing and melting at the ocean-ice interface. Here, we use an idealized, dynamical ocean model forced by an observationally-guided density forcing at the ocean-ice interface to argue that Enceladus' interior ocean should support a meridional overturning circulation. This circulation establishes an interior density structure that is more complex than in studies that have focused only on convection, including a shallow freshwater lens in the polar regions. Spatially-separated sites of ice formation and melt enable Enceladus to sustain a significant vertical and horizontal stratification, which impacts interior heat transport, and is critical for understanding the relationship between a global ocean and the planetary energy budget. The presence of low salinity layers near the polar ocean-ice interface also influences whether samples measured from the plumes are representative of the global ocean

    Seismic anisotropy indicates organised melt beneath the Mid-Atlantic Ridge aids seafloor spreading

    Get PDF
    Skip Nav Destination RESEARCH ARTICLE| AUGUST 04, 2023 Seismic anisotropy indicates organized melt beneath the Mid-Atlantic Ridge aids seafloor spreading J.M. Kendall; D. Schlaphorst; C.A. Rychert; N. Harmon; M. Agius; S. Tharimena Author and Article Information Geology (2023) 51 (10): 968–972. https://doi.org/10.1130/G51550.1 Article history Standard View Open thePDFfor in another window Cite Share Icon Share Permissions Abstract Lithospheric plates diverge at mid-ocean ridges and asthenospheric mantle material rises in response. The rising material decompresses, which can result in partial melting, potentially impacting the driving forces of the system. Yet the geometry and spatial distribution of the melt as it migrates to the ridge axis are debated. Organized melt fabrics can cause strong seismic anisotropy, which can be diagnostic of melt, although this is typically not found at ridges. We present anisotropic constraints from an array of 39 ocean-bottom seismometers deployed on 0–80 Ma lithosphere from March 2016 to March 2017 near the equatorial Mid-Atlantic Ridge (MAR). Local and SKS measurements show anisotropic fast directions away from the ridge axis, which are consistent with strain and associated fabric caused by plate motions with short delay times, δt (<1.1 s). Near the ridge axis, we find several ridge-parallel fast splitting directions, φ, with SKS δt that are much longer (1.7–3.8 s). This is best explained by ridge-parallel sub-vertical orientations of sheet-like melt pockets. This observation is much different than anisotropic patterns observed at other ridges, which typically reflect fabric related to plate motions. One possibility is that thicker sub-ridge lithosphere with steep sub-ridge topography beneath slower spreading centers focuses melt into vertical, ridge-parallel melt bands, which effectively weakens the plate. Associated buoyancy forces elevate the sub-ridge plate, providing greater potential energy and enhancing the driving forces of the plates

    Marine geophysical investigation of the chain fracture zone in the equatorial Atlantic From the PI‐LAB experiment

    Get PDF
    The Chain Fracture Zone is a 300‐km‐long transform fault that offsets the Mid‐Atlantic Ridge. We analyzed new multibeam bathymetry, backscatter, gravity, and magnetic data with 100% multibeam bathymetric data over the active transform valley and adjacent spreading segments as part of the Passive Imaging of the Lithosphere Asthenosphere Boundary (PI‐LAB) Experiment. Analyses of these data sets allow us to determine the history and mode of crustal formation and the tectonic evolution of the transform system and adjacent ridges over the past 20 Myr. We model the total field magnetic anomaly to determine the age of the crust along the northern ridge segment to better establish the timing of the variations in the seafloor fabric and the tectonic‐magmatic history of the region. Within the active transform fault zone, we observe four distinct positive flower structures with several en échelon fault scarps visible in the backscatter data. We find up to −10 mGal residual Mantle Bouguer Anomaly in the region of the largest positive flower structure within the transform zone suggesting crustal thickening relative to the crustal thinning typically observed in fracture zones in the Atlantic. The extensional/compressional features observed in the Chain Transform are less pronounced than those observed further north in the Vema, St. Paul, and Romanche and may be due to local ridge segment adjustments

    The dominant driving force for supercontinent breakup: Plume push or subduction retreat?

    Get PDF
    Understanding the dominant force responsible for supercontinent breakup is crucial for establishing Earth's geodynamic evolution that includes supercontinent cycles and plate tectonics. Conventionally, two forces have been considered: the push by mantle plumes from the sub-continental mantle which is called the active force for breakup, and the dragging force from oceanic subduction retreat which is called the passive force for breakup. However, the relative importance of these two forces is unclear. Here we model the supercontinent breakup coupled with global mantle convection in order to address this question. Our global model features a spherical harmonic degree-2 structure, which includes a major subduction girdle and two large upwelling (superplume) systems. Based on this global mantle structure, we examine the distribution of extensional stress applied to the supercontinent by both sub-supercontinent mantle upwellings and subduction retreat at the supercontinent peripheral. Our results show that: (1) at the center half of the supercontinent, plume push stress is ~3 times larger than the stress induced by subduction retreat; (2) an average hot anomaly of no higher than 50 K beneath the supercontinent can produce a push force strong enough to cause the initialization of supercontinent breakup; (3) the extensional stress induced by subduction retreat concentrates on a ~600 km wide zone on the boundary of the supercontinent, but has far less impact to the interior of the supercontinent. We therefore conclude that although circum-supercontinent subduction retreat assists supercontinent breakup, sub-supercontinent mantle upwelling is the essential force

    Seismic Constraints on the Thickness and Structure of the Martian Crust from InSight

    Get PDF
    NASA¿s InSight mission [1] has for the first time placed a very broad-band seismometer on the surface of Mars. The Seismic Experiment for Interior Structure (SEIS) [2] has been collecting continuous data since early February 2019. The main focus of InSight is to enhance our understanding of the internal structure and dynamics of Mars, which includes the goal to better constrain the crustal thickness of the planet [3]. Knowing the present-day crustal thickness of Mars has important implications for its thermal evolution [4] as well as for the partitioning of silicates and heat-producing elements between the different layers of Mars. Current estimates for the crustal thickness of Mars are based on modeling the relationship between topography and gravity [5,6], but these studies rely on different assumptions, e.g. on the density of the crust and upper mantle, or the bulk silicate composition of the planet and the crust. The resulting values for the average crustal thickness differ by more than 100%, from 30 km to more than 100 km [7]. New independent constraints from InSight will be based on seismically determining the crustal thickness at the landing site. This single firm measurement of crustal thickness at one point on the planet will allow to constrain both the average crustal thickness of Mars as well as thickness variations across the planet when combined with constraints from gravity and topography [8]. Here we describe the determination of the crustal structure and thickness at the InSight landing site based on seismic receiver functions for three marsquakes compared with autocorrelations of InSight data [9].We acknowledge NASA, CNES, partner agencies and institutions (UKSA, SSO,DLR, JPL, IPGP-CNRS, ETHZ, IC, MPS-MPG) and the operators of JPL, SISMOC, MSDS, IRIS-DMC and PDS for providing SEED SEIS data. InSight data is archived in the PDS, and a full list of archives in the Geosciences, Atmospheres, and Imaging nodes is at https://pds-geosciences.wustl.edu/missions/insight/. This work was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. ©2021, California Institute of Technology. Government sponsorship acknowledge

    The interior of Mars as seen by InSight (Invited)

    Get PDF
    InSight is the first planetary mission dedicated to exploring the whole interior of a planet using geophysical methods, specifically seismology and geodesy. To this end, we observed seismic waves of distant marsquakes and inverted for interior models using differential travel times of phases reflected at the surface (PP, SS...) or the core mantle-boundary (ScS), as well as those converted at crustal interfaces. Compared to previous orbital observations1-3, the seismic data added decisive new insights with consequences for the formation of Mars: The global average crustal thickness of 24-75 km is at the low end of pre-mission estimates5. Together with the the thick lithosphere of 450-600 km5, this requires an enrichment of heat-producing elements in the crust by a factor of 13-20, compared to the primitive mantle. The iron-rich liquid core is 1790-1870 km in radius6, which rules out the existence of an insulating bridgmanite-dominated lower mantle on Mars. The large, and therefore low-density core needs a high amount of light elements. Given the geochemical boundary conditions, Sulfur alone cannot explain the estimated density of ~6 g/cm3 and volatile elements, such as oxygen, carbon or hydrogen are needed in significant amounts. This observation is difficult to reconcile with classical models of late formation from the same material as Earth. We also give an overview of open questions after three years of InSight operation on the surface of Mars, such as the potential existence of an inner core or compositional layers above the CM
    corecore