29 research outputs found

    Estimating Water Content and Grain Size of Intertidal Flat Sediments Using Visible to Shortwave-Infrared Reflectance and Sentinel 2A Data: A Case Study of the Red River Delta, Vietnam

    Get PDF
    Sediment properties such as water content (WC) and grain size (GS) are essential to characterize the environmental conditions of tidal flats. This article aimed to develop appropriate models to estimate the WC and GS of surface sediments for an intertidal flat on the Red river delta (Vietnam) using Sentinel 2A (S2A) images. The spectral reflectance, WC, and GS of 96 sub-samples from 12 sediment samples collected on December 17, 2017 were measured to clarify their relationships. The WC was highly correlated with the reflectance ratio of two shortwave-infrared bands, R(2190)/R(1610) (R² = 0.93). The median GS (D₅₀) at 0%, 15%, and 20% of WC was significantly correlated with the reflectance ratio of the near-infrared band (842 nm) versus the visible-green band (560 nm) (R² > 0.78). Next, D₅₀ was estimated from a multivariate regression model using this band ratio, the visible-red band (665 nm), and WC. The accuracy of the models was verified by comparisons with WC and D₅₀ from 20 samples collected on March 12th 2019 (RMSE of both WC and D₅₀ 30%) in very fine sediments (silts), which is consistent with other intertidal flats with similar sediment types. This article was limited to fine sediment samples. Therefore, our next step is to incorporate coarse sediments into the models to provide more universal mapping of WC and sediment types

    Assessment of feed resources availability and use for cattle and pigs in Mai Son District, Son La Province, Vietnam

    Get PDF
    Son La province has recently put in place policies and programs to support expansion of livestock production, however the province still faces low livestock productivity due to low quality and availability of forages and feedstuff. One of the provincial government’s priorities is to increase productivity of cattle and pigs through improved animal nutrition practices such as increased cultivation of improved forages and better feed management and utilization. Using the Gendered Feed Assessment Tool (G-FEAST), this study assessed the availability and use of local feed resources, and identified feed gaps, challenges and constraints affecting livestock production to inform the design of context-specific and inclusive feed intervention strategies. The study was carried out in four villages in Hat Lot and Co Noi communes, Mai Son district, Son La province, Vietnam. Gender-disaggregated data was collected from 16 focus group discussions (FGDs) (eight FGDs with women and eight FGDs with men) and 49 individual interviews (23 women and 26 men). Winter feed shortage was reported as the most pressing challenge. Further constraints included low yield and/or nutritive value of local forages varieties (mainly Napier). The poor quality of diets arising from use of high proportion of crop residues such as rice bran, banana trunk and sugarcane tops was also flagged as a challenge. Men tend to be engaged in activities such as preparing land, planting forage, harvesting, and purchasing, while women are more engaged in cleaning of feeding points, watering, and weeding. The results present key opportunities and entry points for gender-responsive locally suited feed intervention strategies that can address these context-specific challenges, mainly winter feed shortage, can greatly improve livestock productivity and efficiency. Such interventions include capacity building of women and men farmers, extension & vet staff on utilization of locally available feed resources and purchased feeds, feed conservation, diet formulation, and feeding regimes, and promoting improved forage varieties (establishment, management, and utilization), for cattle and pigs

    Challenges and Lessons Learned in the Development of a Participatory Learning and Action Intervention to Tackle Antibiotic Resistance: Experiences From Northern Vietnam

    Get PDF
    Antibiotic use in the community for humans and animals is high in Vietnam, driven by easy access to over-the counter medicines and poor understanding of the role of antibiotics. This has contributed to antibiotic resistance levels that are amongst the highest in the world. To address this problem, we developed a participatory learning and action (PLA) intervention. Here we describe challenges and lessons learned while developing and testing this intervention in preparation for a large-scale One Health trial in northern Vietnam. We tested the PLA approach using community-led photography, and then reflected on how this approach worked in practice. We reviewed and discussed implementation documentation and developed and refined themes. Five main themes were identified related to challenges and lessons learned: understanding the local context, stakeholder relationship development, participant recruitment, building trust and motivation, and engagement with the topic of antibiotics and antimicrobial resistance (AMR). Partnerships with national and local authorities provided an important foundation for building relationships with communities, and enhanced visibility and credibility of activities. Partnership development required managing relationships, clarifying roles, and accommodating different management styles. When recruiting participants, we had to balance preferences for top-down and bottom-up approaches. Building trust and motivation took time and was challenged by limited study team presence in the community. Open discussions around expectations and appropriate incentives were re-visited throughout the process. Financial incentives provided initial motivation to participate, while less tangible benefits like collective knowledge, social connections, desire to help the community, and new skills, sustained longer-term motivation. Lack of awareness and perceived importance of the problem of AMR, affected initial motivation. Developing mutual understanding through use of common and simplified language helped when discussing the complexities of this topic. A sense of ownership emerged as the study progressed and participants understood more about AMR, how it related to their own concerns, and incorporated their own ideas into activities. PLA can be a powerful way of stimulating community action and bringing people together to tackle a common problem. Understanding the nuances of local power structures, and allowing time for stakeholder relationship development and consensus-building are important considerations when designing engagement projects

    Adoptive NK Cell Therapy - a Beacon of Hope in Multiple Myeloma Treatment

    Get PDF
    Major advances in the treatment of multiple myeloma (MM) have been achieved by effective new agents such as proteasome inhibitors, immunomodulatory drugs, or monoclonal antibodies. Despite significant progress, MM remains still incurable and, recently, cellular immunotherapy has emerged as a promising treatment for relapsed/refractory MM. The emergence of chimeric antigen receptor (CAR) technology has transformed immunotherapy by enhancing the antitumor functions of T cells and natural killer (NK) cells, leading to effective control of hematologic malignancies. Recent advancements in gene delivery to NK cells have paved the way for the clinical application of CAR-NK cell therapy. CAR-NK cell therapy strategies have demonstrated safety, tolerability, and substantial efficacy in treating B cell malignancies in various clinical settings. However, their effectiveness in eliminating MM remains to be established. This review explores multiple approaches to enhance NK cell cytotoxicity, persistence, expansion, and manufacturing processes, and highlights the challenges and opportunities associated with CAR-NK cell therapy against MM. By shedding light on these aspects, this review aims to provide valuable insights into the potential of CAR-NK cell therapy as a promising approach for improving the treatment outcomes of MM patients

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation

    Selecting the Best Band Ratio to Estimate Chlorophyll-a Concentration in a Tropical Freshwater Lake Using Sentinel 2A Images from a Case Study of Lake Ba Be (Northern Vietnam)

    Get PDF
    This study aims to develop a method to estimate chlorophyll-a concentration (Chla) in tropical freshwater lake waters using in situ data of Chla, water reflectance, and concurrent Sentinel 2A MSI imagery (S2A) over Lake Ba Be, a Ramsar site and the largest natural freshwater lake in Vietnam. Data from 30 surveyed sampling sites over the lake water in June 2016 and May 2017 demonstrated the appropriateness of S2A green-red band ratio (band 3 versus band 4) for estimating Chla. This was shown through a strong correlation of corresponded field measured reflectance ratio with Chla by an exponential curve (r2 = 0.68; the mean standard error of the estimates corresponding to 5% of the mean value of in situ Chla). The small error between in situ Chla, and estimated Chla from S2A acquired concurrently, confirmed the S2A green-red band ratio as the most suitable option for monitoring Chla in Lake Ba Be water. Resultant Chla distribution maps over time described a partially-seasonal pattern and also displayed the spatial dynamic of Chla in the lake. This allows a better understanding of the lake’s limnological processes to be developed and provides an insight into the factors that affect lake water quality. The results also confirmed the potential of S2A to be used as a free tool for lake monitoring and research due to high spatial resolution data (10 m pixel size)

    Antioxidant Activity of Rambutan ( Nephelium lappaceum

    No full text
    Rambutan (Nephelium lappaceum L.) peel (RBP) is discarded as the main by-product during processing of the fruit. Increasing attention is now paid to the valorization of RBP for the recovery of valuable compounds. Geraniin, ellagic acid, quercetin, and rutin are the main phenolic compounds found in methanolic RBP extract. Extracted rambutan peel powder (ERPP) is used to evaluate the oxidative stability of soybean oil stored at 4 and 30 degrees C in the dark and light and deep fried with potatoes at 160 degrees C. Tert-butylhydroquinone (100 mu g g(-1) oil, TBHQ) serves as positive control. Oil supplemented with ERPP of 1000 mu g gallic acid equivalents (GAE) g(-1) of oil shows positive effects on the retardation of the oxidation process during storage in comparison with oil without addition. During deep frying, either ERPP (1000 mu g GAE g(-1)) or TBHQ retards the lipid oxidation of oil. Levels of thiobarbituric acid reactive substances of potatoes fried in oil fortified with the extract and TBHQ (0.4-0.59 mu g g(-1)) are much lower than those without the extract (1.31 +/- 0.10 mu g g(-1)) (p < 0.05). Therefore, RBP extract exhibits favorable antioxidant effects and can be used for effectively inhibiting lipid oxidation in oil during storage and deep frying. Practical Applications: An extract from rambutan fruit peel containing phenolic compounds, that is, geraniin, ellagic acid, rutin, and quercetin showed promising results to be used as potential antioxidants in soybean oil during deep frying. Both oxidation of the frying oil as well as the oxidation of the food product, that is, potatoes were inhibited. These results demonstrated that rambutan fruit peel extract can be used as a natural antioxidant in frying oil to replace synthetic antioxidants, that is, TBHQ
    corecore