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Estimating Water Content and Grain Size of Intertidal
Flat Sediments Using Visible to Shortwave-Infrared
Reflectance and Sentinel 2A Data: A Case Study of

the Red River Delta, Vietnam
Vu Thi Thu Thuy , Nguyen Thi Thu Ha , Katsuaki Koike , Nguyen Thien Phuong Thao ,

Pham Ngoc Trung, and Dinh Xuan Thanh

Abstract—Sediment properties such as water content (WC) and
grain size (GS) are essential to characterize the environmental
conditions of tidal flats. This article aimed to develop appropriate
models to estimate the WC and GS of surface sediments for an
intertidal flat on the Red river delta (Vietnam) using Sentinel 2A
(S2A) images. The spectral reflectance, WC, and GS of 96 sub-
samples from 12 sediment samples collected on December 17, 2017
were measured to clarify their relationships. The WC was highly
correlated with the reflectance ratio of two shortwave-infrared
bands, R(2190)/R(1610) (R2 = 0.93). The median GS (D50) at
0%, 15%, and 20% of WC was significantly correlated with the
reflectance ratio of the near-infrared band (842 nm) versus the
visible-green band (560 nm) (R2 > 0.78). Next, D50 was estimated
from a multivariate regression model using this band ratio, the
visible-red band (665 nm), and WC. The accuracy of the models
was verified by comparisons with WC and D50 from 20 samples
collected on March 12th 2019 (RMSE of both WC and D50 <
15%). Then, the WC and sediment type distributions were mapped
by applying these models to two S2A scenes. The maps showed
high WC (>30%) in very fine sediments (silts), which is consistent
with other intertidal flats with similar sediment types. This article
was limited to fine sediment samples. Therefore, our next step is
to incorporate coarse sediments into the models to provide more
universal mapping of WC and sediment types.

Index Terms—Hyperspectral imaging, land surface, remote
sensing, sediments, soil properties.
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I. INTRODUCTION

INTERTIDAL flats composed of muddy sediments form an
important part of marine ecosystems. Changes in the sed-

iment properties of intertidal flats, such as the water content
(WC), grain size (GS), type, mineral and chemical composi-
tions, and organic matter content (OM) of sediments, and their
spatio-temporal distributions affect the intertidal environment
and, accordingly, the life of marine organisms, particularly
benthic communities [1], [2]. The WC and GS are among the
most important features of the intertidal environment because
they control sedimentary processes and diagenesis including
transport, precipitation, compaction, and erosion [3]. The WC
is determined by the duration of inundation and exposure of
the intertidal flats, air temperature, and marsh plant density [4].
The GS distribution generally varies from the land towards the
sea depending on the heterogeneous conditions of transport,
accumulation, and hydrodynamics related to tidal and wave
energies in estuaries [5]. Importantly, GS affects vulnerability
to heavy metal pollution [6] and biogeochemical remediation
of polluted sediments. A typical pattern of pollution is that the
level increases with decreasing particle size, i.e., contaminants
accumulate more easily in fine sediments [7]–[9]. Therefore,
accurate estimations of the WC and GS of sediments are es-
sential to clarify the conditions of intertidal environments, their
spatio-temporal change, and the factors influencing that change.

Remote sensing has been used since the 1980s for estimating
WC through the reflectance absorption caused by the O–H
vibration of water molecules [10], as well as for estimating
GS and mapping sediment type (such as silty or sandy soil)
over intertidal flats based on the typical GS range [11]. Remote
sensing has also been used to estimate OM [12], [13]. Mapping
sediment types has been conducted using spectral features in
the visible (VIS), and near- and shortwave-infrared (NIR and
SWIR) regions acquired by various multispectral [11], [14] and
synthetic aperture radar [15] sensors on satellites, hyperspec-
tral aircraft [16], and unmanned aerial vehicles [17]. Typical
multispectral optical sensors for sediment-type mapping include
Terra/ASTER, ALOS, Sentinel 2, Landsat, and SPOT; the TM,
ETM+, and OLI sensor images of the Landsat series have
been applied the most [11], [14], [15], [18], [19]. Conventional
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mapping methods construct regression models between selected
spectral features and statistical parameters of GS (e.g., the
median GS, D50). Although regression models are simple, their
effectiveness has been demonstrated by many case studies [15],
[16], [18].

Previous studies have shown that particle size estimations
from surface reflectance within VIS-SWIR regions are influ-
enced by many factors, such as WC [19], OM [20], mineral
composition [21], [22], porosity [23] of sediment samples, or
viewing angle in reflectance measuring techniques [24]. Few
studies, however, have considered these influences when select-
ing suitable bands or band combinations to develop models for
particle size estimation, particularly in preceding satellite-based
regression models. Consequently, these models are sometimes
applied with insufficient understanding of their limitations or
poor performance.

The spatial and spectral resolutions of the multispectral instru-
ment (MSI) imagery of Sentinel 2A (S2A), launched in June
2015 as a part of the European Space Agency’s Copernicus
Program, are higher than those of the Landsat series. Therefore,
more accurate mapping of sediment types may be possible with
S2A MSI imagery. Although the effectiveness of S2A MSI
imagery has been shown for geological applications, such as
lithological and facies mapping in an arid to semiarid region
[25], tracing iron-bearing minerals in a mining district [26],
mapping hydrothermal alteration minerals [27], and delineating
granite blocks in a weathered and vegetated coastal zone [28],
its application to intertidal flats to date is limited to a study by
[29] because of the short operational period since its launch.
Marchetti et al. [30] investigated the potential of S2A to classify
fine to coarse sediment types on river bars based on imagery
from a near ground unmanned aerial vehicle and demonstrated
a high correlation between SWIR reflectance and D50. However,
the effect of the sediment WC was not considered in estimating
the GS in that study, and it is known that the SWIR reflectance
will change with WC. No methods have been proposed for
estimating both the WC and GS of intertidal sediments using
S2A reflectance data. This limitation does not allow the full
potential of the S2A data to be extracted.

Therefore, this article aimed to develop methods that can accu-
rately estimate sediment WC and D50 from S2A imagery using
VIS, NIR, and SWIR reflectance and in situ WC and D50 data
from intertidal sediments. An intertidal flat in the Red river delta,
Vietnam, was selected as a case study for mapping sediment
type, monitoring its environmental change, and identifying the
factors influencing that change.

II. MATERIALS AND METHODS

A. Study Area

The study area is situated on the southeast coast of the Red
river delta and is the left side of the fan-shaped estuary of the
day river [see Fig. 1(a)]. The intertidal flat is formed by the
interaction of the day river and the coastal area, with diurnal and
meso-tidal tide cycles ranging from 0.1 to 3.7 m (mean, 2.3 m)
[31]. During the high-tide period in spring, the study area is
submerged to a depth of 2 m. The total area of approximately

Fig. 1. (a) Location of the studied tidal flat on the Red river delta, Vietnam.
(b) Location of 12 sampling sites in the initial field campaign on December 17,
2017 overlaid on a false color composite (R: band 11, G: band 8, B: band 2)
S2A image acquired on the same date. (c) Location of 20 sampling sites in the
subsequent field campaign on March 12, 2019 overlaid on a similar false color
composite S2A image acquired on March 12, 2019.

27 km2 is composed of mangrove forest (9.5 km2), shrimp ponds
(5 km2), and unvegetated flat (12.5 km2). The Hai Phong Institute
of Oceanography (renamed Institute of Marine Environment and
Resources) reported in 2003 that the intertidal flat was covered
by four main sediment types: grey; micaceous; and fine-grain
sand (D50: 102–131 μm) from the mean low water line to the
mean sea level (MSL); greyish brown coarse silt (D50: 58–95
μm) between the 2 m water depth to MSL; reddish brown silty
mud (D50: 15–47 μm) between MSL and the mean high water
line (MHWL); and reddish brown clayey mud (D50: 9–10 μm)
in the Day river bed and the top soil of the mangrove forest
between MHWL and the mean higher high water line [32]. The
main source of the sediments is weathered metamorphic rock in
the upper part of the Red river basin; tectonic activities along
the Red river fault system have fractured the rocks and advanced
the weathering [33].

B. Field Sampling and Measurement

Sediment samples of approximately 500 g were taken from
the ground surface up to 3 cm depth on exposed areas of the
flat on December 17, 2017 (initial 12 samples) and March 12,
2019 (subsequent 20 samples). The sample sites included a
wide range of GS and various geographical features such as
upper tidal and intertidal zones, sand bars, and the water line.
They were precisely positioned using a GPS Etrex 10 (Garmin,
Kansas, U.S.).
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According to the tide tables in 2017 and 2019 [31], the tide
level at the local time of the S2A image acquisition over the
study flat at about 10:00 to 11:00 am (3:00 to 4:00 am GMT) on
December 17th 2017 ranged from 1.5 to 1.8 m, whereas on March
12, 2019 it ranged from 0.6 to 0.8 m. Therefore, the intertidal
flat was mostly submerged on the former date [see Fig. 1(b)],
and completely exposed on the latter date [see Fig. 1(c)]. Owing
to the effect of tide level, the locations of the initial 12 samples
and subsequent 20 samples on the flat were distributed closely
and more widely, respectively (see Fig. 1).

Field reflectance was measured in the initial sampling period
in the nadir direction with approximately 10o view zenith angle,
similar to the view zenith angle of the S2A sensor [34] and
at 20 cm above the flat surface using the standard pistol grip
of a portable FieldSpec3 Max spectroradiometer (ASD Inc.,
Boulder, U.S.). The measurements were taken within 30 minutes
of the S2A image acquisition time. The FieldSpec3 Max mea-
sures reflectance and fluxes at wavelengths of 350–2500 nm with
3–10 nm fullwidth half-maximum splined to a spectral output
of 1 nm [35]. The field reflectance was transformed to the S2A
band reflectance using the spectral response function from Brasi
et al. [36]. The transformed field reflectance allowed the effect
of atmosphere to be corrected during the image preprocessing
stage. Among the 12 measured points of the initial sampling
period, the data at two points were lower quality with substantial
noise levels and these were discarded in subsequent analysis.

Each sediment sample was collected using a stainless-steel
spade, placed in a plastic zipper bag and then stored in an icebox
prior to the measurement of WC, GS, and OM using standard
methods in a laboratory.

C. Laboratory Analysis Methods

The GS of sediment is defined as the mean size of the grains in
a sediment sample [37], which can be expressed by percentages
of component grains [38] or by the median particle diameter,
D50, of the sample [39]. In the laboratory, sediment samples
were first air-dried and then lightly crushed using a sterile agate
mortar prior to sieving following the ASTM D6913 [40] to
determine the percentage of grains with a particle diameter larger
than 75 μm. The GS of samples smaller than a No. 200 (75
μm) sieve were analyzed using a laser diffraction particle size
analyzer (LA-950 Laser Particle Size Analyzer, Horiba, Japan)
with the guidance of the D7928 [41]. The D50 was specified
from the cumulative GS distribution using a statistical package
[42], where D50 is the particle size at 50% of the cumulative
percentage. The D50 of all the samples ranged from 5 to 163
μm. Next, the WC was determined by the mass loss of the wet
sample after drying at 110 °C in an oven for 16 h and the OM
was determined by the dried sample being heated gradually to
750 °C in a furnace (SMF-2, AS ONE, Japan) and being kept at
this temperature for at least one hour, until no change in the mass
occurred, respectively, according to the ASTM D2974 [43]. The
OM value determined by this method may be slightly larger
than the actual value because the mass lost during heating at
temperatures higher than 400 °C includes the mass of mineral
structural water [44].

To investigate the effect of WC on the reflectance spectra
of a sample, the initial 12 samples collected on December 17,
2017 were saturated with sea water and then each sample was
divided into eight sub-samples (total of 96 sub-samples). The
sub-samples were dried in an oven for eight different time spans
(0 to 60 min at 10-min intervals, and 6 h) to provide eight
different WC conditions.

The reflectance spectra of the 96 subsamples with different
WC conditions were measured in the laboratory with the same
direction and angle as the field reflectance measurement using
the standard contact probe of the FieldSpec3 mentioned above.
The probe was installed constantly in the nadir direction so that
the sapphire window touched the sample’s surface in a dark box
environment according to the protocol in [45]. The data were also
transformed to S2A band reflectance using the spectral response
function [46] to analyze their correlations with the WC and D50

to identify the most suitable S2A bands or band combinations to
estimate these two parameters. The best models were verified by
estimating WC and D50 from the S2A image acquired on March
12, 2019 using the models and comparing the results with in situ
WC and D50 data from the subsequent 20 samples collected on
that date.

D. Image Processing and Mapping Methods

Two S2A level 1C scenes acquired at 10:16 am (lo-
cal time) on December 17, 2017 (ID: S2A_MSIL1C_
20171217T032131_N0206_R118_T48QXH) and March 12,
2019 (ID: S2A_MSIL1C_20190312T031541_ N0207_R118
_T48QXH) were downloaded from the Copernicus open access
hub. The S2A level 1C images are geometrically corrected
and georeferenced to the UTM/WGS84 projection before re-
lease. To estimate surface WC and other physical properties,
the atmospheric effects on optical sensor image data must be
removed [47]. The empirical linear model (ELM) method [48]
is the most accurate atmospheric correction method for S2A
image data [49], [50]. Therefore, per-pixel reflectance at the
top of atmosphere (TOA) of the images was transformed into
the bottom of atmosphere (BOA) reflectance through ELM to
allow a linear regression between the mean field reflectance at
the ten field sample points and the TOA reflectance of the ten
corresponding pixels of the S2A image.

Finally, the BOA reflectance of the S2A image on March 12,
2019 was used to map the WC and D50 distributions over the
study area from the regression models. First, the unvegetated
intertidal flat zone was delineated from the image. Then the best
models were used to estimate WC and D50 in all pixels of the
zone. The estimated D50 was classified using the thresholds of
the Wentworth scale [39] to map the sediment types over the
intertidal flat. The flowchart of these procedures and the study
methodology are shown in Fig. 2.

III. RESULTS

A. Characterization of Sediment Types Over the Study Area

Table I gives the GS, WC, and OM features of the 32 sediment
samples used in this article. The twelve samples collected on
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Fig. 2. Methodology flowchart for the mapping WC and median GS from
sediment samples and S2A images over the study area.

TABLE I
FEATURES OF SEDIMENT SAMPLES USED FOR MODEL

DEVELOPMENT AND VALIDATION

∗Minimum/Maximum/ Mean.

December 17, 2017 were divided into 96 subsamples. The WC
data for the model development were obtained by adding eight
different levels of water to the dry sediment samples. In contrast,
the WC data for the model verification was the natural WC
of samples collected on the immediate intertidal surface at the
acquisition time of the S2A image on March 12, 2019.

Following the Folk classification criterion [38], the 32 sam-
ples were classified into six sediment types based on the GS dis-
tribution: sand, silty sand, sandy silt, silt, clayey silt (mud), and
clay. The samples were characterized mainly as silty sediments,
because the silt-related types (sandy silt, silt, and clayey silt)
made up 61% of the total samples [see Fig. 3(a)]. The overall OM
was low and ranged from 1.06% to 12.7% with a mean of 3.63%,
which supports the negligible effect of OM on the determination
of D50 of fine sediments [51]. Following the Wentworth scale
for D50, the sediment samples were divided into five types

Fig. 3. Classifications of 32 sediment samples from the study area in the Red
river delta (see Fig. 1) by (a) GS ternary diagram following the Folk classification
criterion [38]. (b) Sediment types based on D50 and the Wentworth scale [39].
The photographs in (c) show the typical appearance of the four common sediment
types in the study area.

[see Fig. 3(b)] in which the D50 of very fine sand (63–125 μm)
and coarse silt (31–63 μm) made up the first and second largest
proportions of the samples, 63% and 26%, respectively. There
were only small variations in the GS distribution indicating that
most samples were well sorted. The sediment types and GS
characteristics of the samples reflected the common sediments
of large river systems under tide-dominated deltaic settings [52],
such as the Amazon River [53] and Changjiang River [54], and
they were similar to the surface sediments of other tidal flats
from the Red river mouth to the day river estuary [55], [56].

The 12 initial samples showed the D50 ranged from 5 to
163 μm. The samples were classified into four types: very fine
silt (N=3, D50: 3.9–7.8μm); coarse silt (N=3, D50: 31–63μm);
very fine sand (N = 5, D50: 63–125 μm); and fine sand (N = 1,
D50: 125–250 μm). The colors of the sample types were similar,
i.e., the fine sand and very fine sand samples were grey, the coarse
silt samples were greyish brown, and the very fine silt samples
were reddish brown [see Fig. 3(c)]. Owing to these two features,
the reflectance spectra of the 12 samples under almost the same
measurement conditions, such as illumination, distance between
the sensor and sample, view direction, and incident zenith angle,
expressed typical spectral patterns for each sediment type with
similar WC.

Like the common sediment-type distribution in tidal flats
described in [57], the sediments in the study area became finer
towards the land, i.e., the coarse sediments were distributed in
the lower sections of the tidal flat, whereas the higher sections
were covered with very fine sediments. Fine sands formed a
sand flat with wave ripples near and/or below the water line
[the top photograph in Fig. 3(c)] and at the bottom of tidal
creeks and the sub-tidal zone below the low tide mark. The
intertidal zone [see Fig. 1(c)] between the high and low tide
marks and the unvegetated zone was mostly covered by a typical
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Fig. 4. Changes in the reflectance spectra of four representative sediment types
based on D50 and the Wentworth scale [39]. (a) Very fine silt. (b) Coarse silt.
(c) Very fine sand. (d) Fine sand, with the different WCs. The wavelengths of
the S2A twelve bands underlie the spectra.

fine silt sediment. Another fine type, the clay sediments, was
distributed on the highest flat, the supratidal zone covered by
mangroves. The present samples corresponded to the sediment
characteristics in the studied flat reported by [32].

B. Effect of WC on the Reflectance Spectra

The porosity of intertidal flat sediment tends to increase with
decreasing GS and, therefore, the WC tends to be greater in
fine sediments. The resultant WCs in a saturated state followed
this general trend, i.e., very fine silt: 38.73%–40.36%, coarse
silt: 25.01%–32.23%, very fine sand: 23.22%–27.09%, and fine
sand: 23.24%. The effect of the WC clearly appeared in the
high reflectance absorption of the fine-grain sediment (very
fine silt) which demonstrated more prominent water absorption
bands compared with the spectra of wet coarser-grain sediment
(fine sand) as shown in Fig. 4(a) and (d). Only band 12 (B12)
contained a water absorption band at 2200 nm (see Fig. 4),
confirming its importance for estimating WC from the S2A
image.

In all the representative samples of the four sediment types
based on D50 (fine sand, very fine sand, coarse silt, and very fine
silt), the reflectance, R(λ) (λ means wavelength) changed sub-
stantially with WC and decreased systematically with increasing
WC (see Fig. 4). In particular, the R(λ) in the SWIR region longer
than 1400 nm decreased more than those in VIS (400–700 nm)
and NIR (700–900 nm) regions. The decrease in R(λ) became
larger with longer wavelengths. The largest decrease occurred in
the longest S2A band, SWIR B12 (centered on 2190 nm), with

Fig. 5. Correlation between WC and (a) the simulated reflectance at S2A band
12, (b) R(B12) excluding WC = 0 % data, (c) reflectance ratio of B12 versus
band 11, R(B12)/R(B11), and (d) R(B12)/R(B11) excluding WC = 0 % data.
The best regression curves of negative logarithmic [(a) and (b)] or linear [(c) and
(d)] functions are overlaid on each graph. R2 and RMSE denote the coefficient
of determination and root-mean-squares error, respectively.

a slightly smaller decrease in the shorter SWIR B11 (centered
on 1610 nm). A feature of B12 was that the R(λ) decline within
the absorption bands became less conspicuous with increasing
WC and disappeared completely at the highest WC level at
23.91%–39.42%. The difference in R(λ) between B11 and B12
depending on WC was used to discriminate WC in the S2A
image data.

A substantial decrease in R(λ) with increasing WC was also
observed in B9, centered on 945 nm, and B10, centered on 1375
nm. However, because these two bands are sensitive to the water
vapor in the atmosphere [58], they could not be used in S2A-
based WC estimation.

The correlation of each simulated S2A band reflectance,
R(B[band number]), with WC was examined first. The Pear-
son correlation coefficients (ρ) for the simulated reflectance at
SWIR B10, B11, and B12 for the 96 sub-samples collected
on December 17. 2017 with WC were: −0.83 (B10); −0.88
(B11); and −0.91 (B12), respectively, whereas the ρ values of
remaining single bands were much smaller, ranging between
0.61 and 0.67. All available S2A band ratios were considered
for WC and only those ratios with ρ > 0.7 were selected.
Two ratios—R(B12)/R(B11) and R(B12)/R(B8)—satisfied this
condition with the highest and second highest correlations with
WC of ρ = −0.81 and −0.72, respectively. Close correla-
tions between these band parameters and WC were confirmed
by their scatter-plots (see Fig. 5). Consequently, R(B12) and
R(B12)/R(B11) were identified as the most suitable band and
band ratio for S2A band-based WC estimation.
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Fig. 6. (a) Changes in reflectance spectra for 14 groups of sediment sub-
samples, overlaid with the S2A band locations. (b) Relationship between WC
and R(B12). (c) Relationship between WC and R(B12)/R(B11) for the groups
with WC > 0 %. The regression curves in (b) and (c) are the best fit with the
maximum R2.

WC = 0% meant a completely dry condition. This condition
is seldom satisfied on the surface of an intertidal flat. Therefore,
the regression curves excluded the WC = 0% data as shown in
Fig. 5(b) and (d). The best fit regressions were obtained by a
logarithmic relationship for R(B12) [see Fig. 5(b)], and a linear
relationship for R(B12)/R(B11) [see Fig. 5(d)]. Their fit was
confirmed by a high R2 (0.81 and 0.74, respectively).

To clarify the relationship between WC and R(B12) and
R(B12)/R(B11) more in detail, the reflectance spectra of all 96
sub-samples were classified into 14 groups according to the 14
WC levels with a 3% interval, and the spectral data in each group
were averaged [see Fig. 6(a)]. This process is termed group nor-
malization. The most notable feature of the averaged 14 spectra
was a decrease in R(λ)s with increasing WC. By excluding the
spectral data of the group with WC = 0% as mentioned above,
the R(B12) and R(B12)/R(B11) of the remaining 13 groups
were correlated with WC [see Fig. 6(b) and (c), respectively].
The regression functions of each parameter were selected by
the maximum R2. Although the R2 was the same for both the
regression models, the RMSE of the band ratio model using the
simplest, linear function was slightly smaller [see Fig. 6(c), N =
13]. Therefore, this regression model was specified as the best
model for estimating WC for the study area, as follows:

WC = 77.89− 64.27∗R (B12)/R(B11) . (1)

C. Relationship Between Reflectance Spectra and Sediment
Type

The relationship between the reflectance spectra of the initial
12 samples collected on December 17, 2017 and D50 was exam-
ined using the WC level (see Fig. 7). In addition to soil particles,
many other components are contained in tidal flat sediments,

Fig. 7. Reflectance spectra of the initial 12 samples with different D50 under
three WC conditions with S2A bands. (a) Fully dry (WC = 0 %). (b) Half-
saturated (almost half the WC of full saturation). (c) Fully saturated.

including water, OM, silicate minerals, and metal ions such
as Fe2+, Fe3+, and Cu2+ [59], [60]. Therefore, the reflectance
spectra from the initial 12 samples under dry conditions (WC =
0%) represented a combination of the reflectance spectra from
all the components [see Fig. 7(a)]. Although the magnitude of
reflectance was different with each sample, a general trend was
common to all the samples, despite the variation in their D50,
in that R(λ) increased substantially from 400 to 1000 nm and
remained almost constant within the range 1000 to 2500 nm.
Other common spectral features and their causes were inter-
preted as follows. The small peak within 600–800 nm originated
from the OM [20], [61] and the three small absorption peaks at
1400, 1900, and 2200 nm in SWIR were caused by vibration
and bending of hydroxyl and water molecules contained mainly
in silicate minerals [19], [62], [63]. The overall R(λ) magnitude,
particularly R(B11) and R(B12), has been shown to increase
with decreasing D50 [19]. However, this feature did not apply
to the fully dried samples, as shown in Fig. 7(a), where the
R(B11) and R(B12) of silts were smaller than those of the
coarser sediments (sands). In this article, the small difference
in D50 among sediment samples may be one explanation for
the small difference in the scattering intensity from the surface
particles. Therefore, the SWIR R(λ) data were not suitable for
estimating D50.

Like the correlation analysis with WC shown above, the sub-
samples were classified into six groups by their D50 within a 6
μm range and then group normalization of the spectral data was
applied for the three WC levels (0%, 15±2%, and 20±2%) in
each group (see Fig. 8). No consistent relationship was found
between R(B11), R(B12) and D50 that was common to the three
WC levels. Figs. 4, 6, and 7(a) demonstrate that WC affected
the overall magnitude of R(λ), but the effect of D50 was absent,
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Fig. 8. Averaged reflectance spectra for six sediment groups for D50 at three
WC levels with different S2A bands. (a) WC = 0 %. (b) WC = 15±2 %. (c)
WC = 20±2 %. The D50 range in each group is within 6 µm.

Fig. 9. Correlation between the D50 and the simulated S2A band ratio, B8
versus B3, R(B8)/R(B3) of (a) six sediment groups at three WC levels, 0 %,
15±2 %, and 20±2 % colored orange, green, and blue, respectively, and (b) 96
subsamples without consideration of WC (black) with regression lines. The red
marks in (b) denote the group normalization of B8/B3 based on D50.

particularly in the SWIR region. Therefore, the correlation of
R(λ) with D50 was examined in the VIS–NIR bands (B1–B8a).
The highest correlations of D50 that were common to the three
WC levels were observed with B8 and B8a (ρ ≥ 0.80), which
suggests these bands are important for estimating D50.

The most noteworthy feature in Fig. 8 is that the R(λ) increased
linearly between B3 (543–578 nm) and B8, but the gradients
differed with D50, common to the WC levels. Therefore, the
simulated S2A band ratio of B8 versus B3, R(B8)/R(B3) was
selected to analyze the correlation of D50, in which the D50 data
were averaged in each group, e.g., D50 = 6 μm was used for
the D50 = 5–7 μm group in Fig. 8. Close negative relationships
between the two parameters were common to the three WC levels
with ρ ≥ 0.88 (R2 ≥ 0.78) as shown in Fig. 9(a). The D50 and
R(B8)/R(B3) data of the 96 subsamples were plotted regardless
of WC [see Fig. 9(b)] and a negative correlation was shown (ρ=
−0.72, R2 = 0.52). If the WC effect on B8/B3 was assumed to be

TABLE II
SUMMARY OF MULTIVARIATE REGRESSION MODELS FOR ESTIMATING D50

FROM SELECTED EXPLORATORY VARIABLES, R(B8)/R(B3), WC, AND R(B4)

F and p denote the F-ratio and statistical significance of each coefficient, respectively.

negligible, the correlation of the group normalized B8/B3 with
D50 became stronger [shown as red dots in Fig. 9(b)] with ρ =
−0.90 and R2 = 0.81. This suggests that D50 can be estimated
directly from R(B8)/R(B3) for sediments with a similar WC.
Additionally, the importance of spatio-temporal changes in WC
for the estimation of D50 was confirmed and was incorporated
as a variable into the estimation model.

The color of the intertidal flat varied with the sediment type
as described above. The most distinct color was red for fine
sediments. Therefore, it was possible that the S2A red band,
B4 (650–658 nm), could be used to estimate D50 together with
R(B8)/R(B3). To obtain a more accurate D50 estimation and
construct the best regression model, R(B8)/R(B3), WC, and
R(B4) were considered as explanatory variables in a multivariate
analysis of the 96 subsamples. This multivariate analysis pro-
vided multivariate linear regression models of the D50 prediction
from a set of explanatory variables, R(B8)/R(B3), WC, and
R(B4). The best model was obtained with this combination,
with a maximum adjusted R2 = 0.70, indicating that 70% of
the variation in D50 was explained by the three variables. The
mean RMSE was 27 μm (see Table II), which was regarded as
acceptable with a mean D50 for the 96 subsamples of 66 μm.

This model, termed the VNIR_W model, was statistically
significant for the prediction of D50 because the significance
value (p) of 0.00 was less than the alpha value of 0.05 and the
model showed a good overall fit to the data, F(3, 96) = 71.31 at
p < 0.05. The negative β values of all three variables indicated
that D50 increased with decreasing WC (t = −6.66; p = 0.00),
R(B8)/R(B3) (t = −9.91; p = 0.00) and R(B4) (t = −7.17;
p = 0.00), where t is the coefficient divided by the standard
error in the t–statistic (see Table III). R(B8)/R(B3) was specified
as the strongest factor for D50 from the magnitudes of β and t.
The VNIR_W model is expressed as

D50 = 487.49− 763.78∗R (B4)

− 163.24∗R (B8) /R (B3)− 2.45∗WC. (2)
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TABLE III
COEFFICIENTS OF THE VNIR_W MODEL IN TABLE I

B and β are the standardized regression coefficients and t is a coefficient of the t-statistic.

Fig. 10. Consistency of reflectance between field reflectance and S2A image
reflectance retrieved through the ELM atmospheric correction method (BOA
reflectance). (a) Field reflectance measured at 10 sampling sites on December
17, 2017, (b) Comparisons between simulated S2A band reflectance (in situ) and
BOA reflectance of the S2A image (imag.); and, scatter-plots of the simulated
reflectance and BOA reflectance for (c) B12/B11, (d) B8/B3, and (e) B4
reflectance. The 1:1 line and regression lines are overlaid on the scatter plots.

D. Verification of Regression Models

The reflectance spectra measured at the 10 sites used for the
atmospheric correction and the comparisons between simulated
S2A band reflectance (in situ) and BOA reflectance (image)
are shown in Fig. 10(a) and (b), respectively. To confirm the
applicability of the S2A image data through the ELM atmo-
spheric correction method, the consistency of the reflectance
and band ratios of the in-situ data used for WC and D50,
R(B4), R(B12)/R(B11), and R(B8)/R(B3) were checked against
those of the BOA reflectance in the ten corresponding S2A
image pixels on December 17, 2017 using scatter plots [see
Fig. 10(c)–(e)]. Because adequate correlations were shown for
all three parameters, with an R2 ≥ 0.75, the two corrected S2A
images were used to estimate WC and D50 using models (1)
and (2).

The subsequent 20 samples collected on March 12, 2019
were used to verify the accuracy of the regression models for

Fig. 11. Cross-validation of the two regression models. (a) model (1) used for
estimating WC and (b) model (2) used for D50, by comparing estimated WC and
D50 values with those of the subsequent 20 samples. Regression (dotted) and 45 °
lines (broken lines) are overlaid on the scatter plots to indicate overestimations
above the 45 ° line and underestimations beneath it.

calculating WC and D50. The results are shown in scatter plots
between the estimated and measured WC and D50 values in
Fig. 11(a) and (b), respectively. Fig. 11 supports the reliability
of the models with a relatively high R2 (0.83 and 0.85) and
small RMSE (3.7% and 5.8 μm), respectively. A smoothing
effect appeared on the WC and D50 estimations, i.e., an un-
derestimation of high WC and an overestimation of small D50

(see Fig. 11). Therefore, model (1) is not suitable for estimating
the WC of silts under saturated conditions and model (2) is not
accurate for areas covered by clay and very fine silt. However,
clayey areas are often covered by mangroves and very fine silt
areas tend to be small on intertidal flats, as reported by [32].
Considering those situations, the proposed regression models are
reasonably effective for estimating the WC and D50 of intertidal
flat sediments.

E. Mapping of WC and Sediment Type Using S2A Image Data

The ranges of estimated WC and D50 from the two S2A im-
ages were 2%–42.5% and 3.9–140 μm, respectively. Using the
estimated D50, sediments were reclassified into six types: very
fine silt (D50: 3.9–7.8μm), fine silt (D50: 7.8–15.6μm), medium
silt (D50: 15.6–31 μm), coarse silt (D50: 31–63 μm), very fine
sand (D50: 63–125 μm), and fine sand (D50: 125–250 μm)
following the Wentworth scale. The resulting distributions of
WC and sediment types are shown in Fig. 12. Because the
intertidal flat was narrower in the 2017 image than the 2019
image, the spatial variations of WC and the sediment types are
unclear in the 2017 image [see Fig. 12(a) and (b)]. In contrast, a
trend of increasing WC from the shoreline toward the land with
decreasing D50, i.e., changing from coarse to fine sediments is
conspicuous in the 2019 image which shows the entire tidal flat
[see Fig. 12(c) and (d)]. Accordingly, this article clarifies that the
finer sediments tended to contain higher WC. Low WC zones
<10% were mostly the sand bars along the shoreline and zones
approximately 2 m higher than MWL [64].

The sediment distribution was characterized by fine sands,
coarse silt, and very fine sands which constituted the sand bars,
the lowlands close to mangroves, and flat zones between them,
respectively. In contrast to these major types, the distribution of
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Fig. 12. Distributions of estimated WC and sediment type classified by the
D50 of surface sediments over the study area using the S2A image data acquired
on (a) and (b) December 17,2017 and (c) and (d) March 12, 2019 calculated
from (1) and (2). All maps are overlaid on the false-color image as in Fig. 1(b)
and (c).

very fine sediments composed of medium silt, fine silt, and very
fine silt was limited to small parts of the lowland flats surrounded
by coarse silts. The patterns in the article are consistent with the
survey results of the Hai Phong Oceanography Institute in 2003
[32], and the map based on in situ measurements created by
[64]. These consistencies support the accuracy and effectiveness
of the proposed regression models and suggest their potential
for mapping sediment types over tidal flats along the Red river
delta and where other tidal flats occur with similar geographic
conditions to the study area.

IV. DISCUSSION

A. Use of SWIR Band Ratio for WC

A variety of models using reflectance data from optical sensor
imagery have been proposed for estimating WC based on the
absorption and refraction of water at the water–mineral inter-
faces of electromagnetic waves, including in disciplines, such
as soil engineering, agriculture, and environmental applications
[65]–[67]. This article revealed that the ratio of reflectance
between B11 and B12 was the best for estimating WC using
S2A image data. This was demonstrated by a strong negative
correlation (ρ < −0.8) between the WC of 96 subsamples from
dry to saturated conditions and the simulated band ratio [see
Fig. 5(c) and (d)]. The selection of B11 and B12 was verified by
[68] who revealed the strong dependence of reflectance on WC
in these bands, as shown here in Fig. 6(a). It was also verified by
[69] who specified that the SWIR band around 2210 nm (B12 in

the article) was the most suitable single band for estimating WC,
because its reflectance was the most highly correlated with WC.
We found this was common to all the sediment types [see
Figs. 5 and 6]. However, the use of single band reflectance
for WC estimation is often not adaptable, because the reflectance
can change substantially with the condition of electromagnetic
waves and the viewing angle of the sample as reported from
laboratory-based results [70], as well as with the atmospheric
and topographic effects of satellite imagery. Band ratios can
reduce these effects by enhancing the reflectance difference
between individual bands [71]. Consequently, the present study
selected the band ratio model for estimating the WC.

A band ratio approach using an SWIR band around 2200 nm
and an NIR band has been applied for soil moisture estimation
and drought monitoring in a tropical region [72]. The band
ratio, B12/B8, is equivalent to the SWIR/NIR ratio. However,
its correlation with WC (ρ = −0.75 for all 96 subsamples and
ρ = −0.82 for the 84 wet sub-samples where WC > 0%), was
weaker than the use of B12/B11, where ρ = −0.81 and ρ =
−0.86, for the equivalent samples. The SWIR/NIR ratio is also
more suitable for areas with vegetation [68], rather than for the
intertidal flats examined in this article. Because NIR reflectance
is strongly affected by the leaf dry matter content, rather than
by WC, the SWIR/NIR ratio is effective at removing the effect
of leaf dry matter content and thus increasing the estimation
accuracy of WC in vegetated areas [73]. These reasons led us to
avoid the use of NIR reflectance for WC in this article.

B. Use of Regression Models for Sediment GS

An inverse and conspicuous relationship between particle
size and R(λ), particularly in the SWIR region in the dry state,
has been reported by many studies [19], [70], [74], [75]. This
relationship can be interpreted as an increase in particle size with
increasing surface roughness caused by a rise in self-shadowing
effects and multiple scattering and therefore, a decrease in the to-
tal surface reflectance in a defined view angle [76]. However, this
physics does not always fit with fine sediments as demonstrated
in previous studies [77], [78] and also in the results presented
here for fine sediments composed of very fine sand, silts, and
clay in Figs. 7(a) and 8(a). This inconsistency may be caused by
the small variation in the D50 of the samples, which led to small
differences in the SWIR R(λ). Another cause was the change
in the colors of samples along with D50, e.g., the very fine silt
samples (D50 = 5–7 μm) were reddish brown, which indicated
the occurrence and deposition of Fe oxides and, accordingly,
decreased the overall R(λ). In contrast, the fine sand samples
(D50 = 163 μm), mainly composed of quartz, were light grey
and had relatively large R(λ). The dependence of the spectra
of dry samples on the color of sediments in addition to the
GS, as shown in Figs. 7(a) and 8(a), is also reported by [79].
Therefore, consideration of the red band (B4) reflectance in (2)
is appropriate.

By classifying the data into WC classes (0%, 15±2%, and
20±2%), strong negative correlations (ρ < −0.8) between D50

and the NIR band reflectance in B8 and B8a within 785–899 nm
range were revealed by this article. This finding agrees with that
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of [13] who compared the D50 of dry sediments sampled from
the tidal flats of the Red river mouth (near our study area) with
the NIR band reflectance of ALOS imagery at B4 (760–890 nm)
and found a negative correlation between the reflectance and the
particle size of dry samples. The interpretation was that there
was an increase in the absorption of photons in coarse sediments
according to Beer’s law [80], [81], because the internal paths of
photons in sediment pores become greater with increasing GS.
This article demonstrated that the difference in R(λ) between the
NIR and visible bands was significantly related to D50, which
is similar to previous findings [15], [82]. Therefore, the NIR
to visible band ratio, B8/B3, was selected for D50 estimation,
similar to a band ratio of R(750)/R(420) reported by [82] and
a band ratio between Landsat TM B2 (visible green: 520–650
nm) and B5 (SWIR: 1550–1750 nm) reported by [15].

Furthermore, this article confirmed a strong effect of WC on
the overall reflectance spectrum as shown in Fig. 6, indicating
that the overall R(λ) decreased substantially with just an increase
of 3% in WC from the dry condition. This finding concurs with
previous studies [19], [83]. In fact, incorporation of the WC
into D50 estimation through model (2) improved the estimation
accuracy, as shown in Table I.

The selection of the NIR and the VIS band ratio, red band
reflectance, and WC as exploratory variables in the regression
model for D50 estimation is supported by previous findings and,
therefore, forms an appropriate method. The accuracy of the
regression model was verified in Fig. 11(b), and its effective-
ness was demonstrated by the characteristic and valid sediment
type distributions through the model [see Fig. 12]. To make
the regression model more versatile, coarse sediments, such as
medium and coarse sands, which were not distributed in the
study area, should be analyzed. In addition, both calibration
and validation with field data are indispensable in applying the
regression model to other tidal flats.

V. CONCLUSION

To improve remotely-sensed regional monitoring of tideland
environments, this article aimed to clarify the effects of WC and
GS distribution on the reflectance spectra of surface sediments
by focusing on the intertidal flat on the Red river delta coast
in Vietnam using S2A image data. Through the analyses of 32
surface sediment samples from the tidal flat, collected on two
field visits (12 and 20 samples, respectively), and the measure-
ment of their reflectance spectra, significant correlations were
found between the WC and the S2A band ratio, B12/B11 (ρ =
−0.81), and also between the D50 and the band ratio, B8/B3
(ρ = −0.73). The overall magnitude of the reflectance spectra
changed substantially with the WC, but varied only slightly
with D50, which indicates that WC can be estimated directly
from B12/B11 while WC also needs to be considered for D50

estimation.
The regression models were formulated using data from the

initial 12 samples to estimate WC and D50. The best fitted models
were a linear function of B12/B11 for WC (R2 = 0.93, RMSE
= 3.19%) and a linear multivariate model using an NIR and
VIS band ratio (B8/B3), red band (B4) reflectance which could

discriminate the color of sediments, and WC for D50 (adjusted
R2 = 0.70, RMSE = 27 μm). The effectiveness of the two
regression models was verified by large R2 and small RMSE for
the estimated WC and D50 values in the measured subsequent
20 samples (R2 = 0.83; RMSE = 3.7% and R2 = 0.85; RMSE
= 5.8 μm, respectively).

Using two S2A scenes, the regression models were applied
to map the WC and sediment type distributions over the study
area by classifying six sediment types (very fine silt, fine silt,
medium silt, coarse silt, very fine sand, and fine sand) based
on the estimated D50 using the Wentworth scale. The features
of sediment-type distribution agreed well with the previous field
survey results in the study area in that the tidal flat was dominated
by fine sediments and the fine sand, silt, and very fine sand were
distributed mainly on the sand bars along the coastline, close to
the mangroves, and between the silt and fine sand, respectively.

Consequently, our results demonstrate the potential of S2A
reflectance data for estimating the physical properties and types
of sediment on intertidal flats. The proposed regression models
can be applied to monitor the tidal flats along the Red river delta
coast and in other tidal flats with similar geographic conditions
to this study area.
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