12 research outputs found

    Metabolic Profiling in Maturity-Onset Diabetes of the Young (MODY) and Young Onset Type 2 Diabetes Fails to Detect Robust Urinary Biomarkers

    Get PDF
    It is important to identify patients with Maturity-onset diabetes of the young (MODY) as a molecular diagnosis determines both treatment and prognosis. Genetic testing is currently expensive and many patients are therefore not assessed and are misclassified as having either type 1 or type 2 diabetes. Biomarkers could facilitate the prioritisation of patients for genetic testing. We hypothesised that patients with different underlying genetic aetiologies for their diabetes could have distinct metabolic profiles which may uncover novel biomarkers. The aim of this study was to perform metabolic profiling in urine from patients with MODY due to mutations in the genes encoding glucokinase (GCK) or hepatocyte nuclear factor 1 alpha (HNF1A), type 2 diabetes (T2D) and normoglycaemic control subjects. Urinary metabolic profiling by Nuclear Magnetic Resonance (NMR) and ultra performance liquid chromatography hyphenated to Q-TOF mass spectrometry (UPLC-MS) was performed in a Discovery set of subjects with HNF1A-MODY (n = 14), GCK-MODY (n = 17), T2D (n = 14) and normoglycaemic controls (n = 34). Data were used to build a valid partial least squares discriminate analysis (PLS-DA) model where HNF1A-MODY subjects could be separated from the other diabetes subtypes. No single metabolite contributed significantly to the separation of the patient groups. However, betaine, valine, glycine and glucose were elevated in the urine of HNF1A-MODY subjects compared to the other subgroups. Direct measurements of urinary amino acids and betaine in an extended dataset did not support differences between patients groups. Elevated urinary glucose in HNF1A-MODY is consistent with the previously reported low renal threshold for glucose in this genetic subtype. In conclusion, we report the first metabolic profiling study in monogenic diabetes and show that, despite the distinct biochemical pathways affected, there are unlikely to be robust urinary biomarkers which distinguish monogenic subtypes from T2D. Our results have implications for studies investigating metabolic profiles in complex traits including T2D.publishedVersio

    Assessment of High-Sensitivity C-Reactive Protein Levels as Diagnostic Discriminator of Maturity-Onset Diabetes of the Young Due to HNF1A Mutations

    Get PDF
    OBJECTIVE: Despite the clinical importance of an accurate diagnosis in individuals with monogenic forms of diabetes, restricted access to genetic testing leaves many patients with undiagnosed diabetes. Recently, common variation near the HNF1 homeobox A (HNF1A) gene was shown to influence C-reactive protein levels in healthy adults. We hypothesized that serum levels of high-sensitivity C-reactive protein (hs-CRP) could represent a clinically useful biomarker for the identification of HNF1A mutations causing maturity-onset diabetes of the young (MODY). RESEARCH DESIGN AND METHODS: Serum hs-CRP was measured in subjects with HNF1A-MODY (n = 31), autoimmune diabetes (n = 316), type 2 diabetes (n = 240), and glucokinase (GCK) MODY (n = 24) and in nondiabetic individuals (n = 198). The discriminative accuracy of hs-CRP was evaluated through receiver operating characteristic (ROC) curve analysis, and performance was compared with standard diagnostic criteria. Our primary analyses excluded approximately 11% of subjects in whom the single available hs-CRP measurement was >10 mg/l. RESULTS: Geometric mean (SD range) hs-CRP levels were significantly lower (

    Metabolic Profiling in Maturity-Onset Diabetes of the Young (MODY) and Young Onset Type 2 Diabetes Fails to Detect Robust Urinary Biomarkers

    Get PDF
    It is important to identify patients with Maturity-onset diabetes of the young (MODY) as a molecular diagnosis determines both treatment and prognosis. Genetic testing is currently expensive and many patients are therefore not assessed and are misclassified as having either type 1 or type 2 diabetes. Biomarkers could facilitate the prioritisation of patients for genetic testing. We hypothesised that patients with different underlying genetic aetiologies for their diabetes could have distinct metabolic profiles which may uncover novel biomarkers. The aim of this study was to perform metabolic profiling in urine from patients with MODY due to mutations in the genes encoding glucokinase (GCK) or hepatocyte nuclear factor 1 alpha (HNF1A), type 2 diabetes (T2D) and normoglycaemic control subjects. Urinary metabolic profiling by Nuclear Magnetic Resonance (NMR) and ultra performance liquid chromatography hyphenated to Q-TOF mass spectrometry (UPLC-MS) was performed in a Discovery set of subjects with HNF1A-MODY (n = 14), GCK-MODY (n = 17), T2D (n = 14) and normoglycaemic controls (n = 34). Data were used to build a valid partial least squares discriminate analysis (PLS-DA) model where HNF1A-MODY subjects could be separated from the other diabetes subtypes. No single metabolite contributed significantly to the separation of the patient groups. However, betaine, valine, glycine and glucose were elevated in the urine of HNF1A-MODY subjects compared to the other subgroups. Direct measurements of urinary amino acids and betaine in an extended dataset did not support differences between patients groups. Elevated urinary glucose in HNF1A-MODY is consistent with the previously reported low renal threshold for glucose in this genetic subtype. In conclusion, we report the first metabolic profiling study in monogenic diabetes and show that, despite the distinct biochemical pathways affected, there are unlikely to be robust urinary biomarkers which distinguish monogenic subtypes from T2D. Our results have implications for studies investigating metabolic profiles in complex traits including T2D

    Refractory hypercalcaemia secondary to parathyroid carcinoma:response to high-dose denosumab

    No full text
    OBJECTIVE: Hypercalcaemia is an important cause of increased morbidity and mortality in patients with parathyroid carcinoma. Surgical resection is the mainstay of treatment but, equally, managing hypercalcaemia is of paramount importance. At present, few therapies have been shown to be effective in the most severe cases. This report describes the efficacy of denosumab in a patient with parathyroid carcinoma when conventional therapies had been shown to be relatively ineffective.SUBJECT, METHODS AND RESULTS: A 50-year-old man presented with symptomatic hypercalcaemia 1 year after the surgery for his parathyroid carcinoma. Investigations revealed raised serum calcium and parathyroid hormone concentrations consistent with the recurrence of the disease. Imaging failed to localise any surgically remediable foci. Medical management with loop diuretics, calcimimetics and bisphosphonates failed to provide a sustained response. Denosumab, as a monthly injection, led to a gradual decrement in his peak calcium concentrations with the values now persistently below 3 mmol/l. CONCLUSIONS: Denosumab, a fully human MAB that binds to the 'receptor activator of nuclear factor κB ligand (RANKL)', was shown to have a profound effect in modulating malignant hypercalcaemia. This medication should be considered as an effective option in patients with refractory hypercalcaemia secondary to parathyroid carcinoma

    Lipoprotein composition in HNF1A-MODY:differentiating between HNF1A-MODY and type 2 diabetes

    No full text
    INTRODUCTION: The young-onset diabetes seen in HNF1A-MODY is often misdiagnosed as Type 2 diabetes. Type 2 diabetes, unlike HNF1A-MODY, is associated with insulin resistance and a characteristic dyslipidaemia. We aimed to compare the lipid profiles in HNF1A-MODY, Type 2 diabetes and control subjects and to determine if lipids can be used to aid the differential diagnosis of diabetes sub-type. METHODS: 1) 14 subjects in each group (HNF1A-MODY, Type 2 diabetes and controls) were matched for gender and BMI. Fasting lipid profiles and HDL lipid constituents were compared in the 3 groups. 2) HDL-cholesterol was assessed in a further 267 patients with HNF1A-MODY and 297 patients with a diagnosis of Type 2 diabetes to determine its discriminative value. RESULTS: 1) In HNF1A-MODY subjects, plasma-triglycerides were lower (1.36 vs. 1.93 mmol/l, p = 0.07) and plasma-HDL-cholesterol was higher than in subjects with Type 2 diabetes (1.47 vs. 1.15 mmol/l, p = 0.0008), but was similar to controls. Furthermore, in the isolated HDL; HDL-phospholipid and HDL-cholesterol ester content were higher in HNF1A-MODY, than in Type 2 diabetes (1.59 vs. 1.33 mmol/L, p = 0.04 and 1.10 vs. 0.83 mmol/L, p = 0.019, respectively), but were similar to controls (1.59 vs. 1.45 mmol/L, p = 0.35 and 1.10 vs. 1.21 mmol/L, p = 0.19, respectively). 2) A plasma-HDL-cholesterol > 1.12 mmol/L was 75% sensitive and 64% specific (ROC AUC = 0.76) at discriminating HNF1A-MODY from Type 2 diabetes. CONCLUSION: The plasma-lipid profiles of HNF1A-MODY and the lipid constituents of HDL are similar to non-diabetic controls. However, HDL-cholesterol was higher in HNF1A-MODY than in Type 2 diabetes and could be used as a biomarker to aid in the identification of patients with HNF1A-MODY

    Follow up of glucose, amino acid and betaine signals.

    No full text
    <p>Data are median (IQR). P values compare HNF1A and T2D using Mann Whitney U test except for * where comparisons between all 3 groups are calculated by Kruskal-Wallis test.</p
    corecore