31 research outputs found

    Assembling a global database of child pneumonia studies to inform WHO pneumonia management algorithm: methodology and applications

    Get PDF
    BACKGROUND: The existing World Health Organization (WHO) pneumonia case management guidelines rely on clinical symptoms and signs for identifying, classifying, and treating pneumonia in children up to 5 years old. We aimed to collate an individual patient-level data set from large, high-quality pre-existing studies on pneumonia in children to identify a set of signs and symptoms with greater validity in the diagnosis, prognosis, and possible treatment of childhood pneumonia for the improvement of current pneumonia case management guidelines. METHODS: Using data from a published systematic review and expert knowledge, we identified studies meeting our eligibility criteria and invited investigators to share individual-level patient data. We collected data on demographic information, general medical history, and current illness episode, including history, clinical presentation, chest radiograph findings when available, treatment, and outcome. Data were gathered separately from hospital-based and community-based cases. We performed a narrative synthesis to describe the final data set. RESULTS: Forty-one separate data sets were included in the Pneumonia Research Partnership to Assess WHO Recommendations (PREPARE) database, 26 of which were hospital-based and 15 were community-based. The PREPARE database includes 285 839 children with pneumonia (244 323 in the hospital and 41 516 in the community), with detailed descriptions of clinical presentation, clinical progression, and outcome. Of 9185 pneumonia-related deaths, 6836 (74%) occurred in children <1 year of age and 1317 (14%) in children aged 1-2 years. Of the 285 839 episodes, 280 998 occurred in children 0-59 months old, of which 129 584 (46%) were 2-11 months of age and 152 730 (54%) were males. CONCLUSIONS: This data set could identify an improved specific, sensitive set of criteria for diagnosing clinical pneumonia and help identify sick children in need of referral to a higher level of care or a change of therapy. Field studies could be designed based on insights from PREPARE analyses to validate a potential revised pneumonia algorithm. The PREPARE methodology can also act as a model for disease database assembly

    Chest Radiograph Findings in Childhood Pneumonia Cases From the Multisite PERCH Study.

    Get PDF
    BACKGROUND.: Chest radiographs (CXRs) are frequently used to assess pneumonia cases. Variations in CXR appearances between epidemiological settings and their correlation with clinical signs are not well documented. METHODS.: The Pneumonia Etiology Research for Child Health project enrolled 4232 cases of hospitalized World Health Organization (WHO)-defined severe and very severe pneumonia from 9 sites in 7 countries (Bangladesh, the Gambia, Kenya, Mali, South Africa, Thailand, and Zambia). At admission, each case underwent a standardized assessment of clinical signs and pneumonia risk factors by trained health personnel, and a CXR was taken that was interpreted using the standardized WHO methodology. CXRs were categorized as abnormal (consolidation and/or other infiltrate), normal, or uninterpretable. RESULTS.: CXRs were interpretable in 3587 (85%) cases, of which 1935 (54%) were abnormal (site range, 35%-64%). Cases with abnormal CXRs were more likely than those with normal CXRs to have hypoxemia (45% vs 26%), crackles (69% vs 62%), tachypnea (85% vs 80%), or fever (20% vs 16%) and less likely to have wheeze (30% vs 38%; all P < .05). CXR consolidation was associated with a higher case fatality ratio at 30-day follow-up (13.5%) compared to other infiltrate (4.7%) or normal (4.9%) CXRs. CONCLUSIONS.: Clinically diagnosed pneumonia cases with abnormal CXRs were more likely to have signs typically associated with pneumonia. However, CXR-normal cases were common, and clinical signs considered indicative of pneumonia were present in substantial proportions of these cases. CXR-consolidation cases represent a group with an increased likelihood of death at 30 days post-discharge

    Colonization Density of the Upper Respiratory Tract as a Predictor of Pneumonia-Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii.

    Get PDF
    BACKGROUND.: There is limited information on the association between colonization density of upper respiratory tract colonizers and pathogen-specific pneumonia. We assessed this association for Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. METHODS.: In 7 low- and middle-income countries, nasopharyngeal/oropharyngeal swabs from children with severe pneumonia and age-frequency matched community controls were tested using quantitative polymerase chain reaction (PCR). Differences in median colonization density were evaluated using the Wilcoxon rank-sum test. Density cutoffs were determined using receiver operating characteristic curves. Cases with a pathogen identified from lung aspirate culture or PCR, pleural fluid culture or PCR, blood culture, and immunofluorescence for P. jirovecii defined microbiologically confirmed cases for the given pathogens. RESULTS.: Higher densities of H. influenzae were observed in both microbiologically confirmed cases and chest radiograph (CXR)-positive cases compared to controls. Staphylococcus aureus and P. jirovecii had higher densities in CXR-positive cases vs controls. A 5.9 log10 copies/mL density cutoff for H. influenzae yielded 86% sensitivity and 77% specificity for detecting microbiologically confirmed cases; however, densities overlapped between cases and controls and positive predictive values were poor (<3%). Informative density cutoffs were not found for S. aureus and M. catarrhalis, and a lack of confirmed case data limited the cutoff identification for P. jirovecii. CONCLUSIONS.: There is evidence for an association between H. influenzae colonization density and H. influenzae-confirmed pneumonia in children; the association may be particularly informative in epidemiologic studies. Colonization densities of M. catarrhalis, S. aureus, and P. jirovecii are unlikely to be of diagnostic value in clinical settings

    Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study

    Get PDF
    Background: Seasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middle-income countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018. Methods: We estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and population-based childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries. Findings: In 2018, among children under 5 years globally, there were an estimated 109·5 million influenza virus episodes (uncertainty range [UR] 63·1–190·6), 10·1 million influenza-virus-associated ALRI cases (6·8–15·1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000–1 415 000), 15 300 in-hospital deaths (5800–43 800), and up to 34 800 (13 200–97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries. Interpretation: A large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middle-income countries. Funding: WHO; Bill & Melinda Gates Foundation.Fil: Wang, Xin. University of Edinburgh; Reino UnidoFil: Li, You. University of Edinburgh; Reino UnidoFil: O'Brien, Katherine L.. University Johns Hopkins; Estados UnidosFil: Madhi, Shabir A.. University of the Witwatersrand; SudáfricaFil: Widdowson, Marc Alain. Centers for Disease Control and Prevention; Estados UnidosFil: Byass, Peter. Umea University; SueciaFil: Omer, Saad B.. Yale School Of Public Health; Estados UnidosFil: Abbas, Qalab. Aga Khan University; PakistánFil: Ali, Asad. Aga Khan University; PakistánFil: Amu, Alberta. Dodowa Health Research Centre; GhanaFil: Azziz-Baumgartner, Eduardo. Centers for Disease Control and Prevention; Estados UnidosFil: Bassat, Quique. University Of Barcelona; EspañaFil: Abdullah Brooks, W.. University Johns Hopkins; Estados UnidosFil: Chaves, Sandra S.. Centers for Disease Control and Prevention; Estados UnidosFil: Chung, Alexandria. University of Edinburgh; Reino UnidoFil: Cohen, Cheryl. National Institute For Communicable Diseases; SudáfricaFil: Echavarría, Marcela Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Fasce, Rodrigo A.. Public Health Institute; ChileFil: Gentile, Angela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Gordon, Aubree. University of Michigan; Estados UnidosFil: Groome, Michelle. University of the Witwatersrand; SudáfricaFil: Heikkinen, Terho. University Of Turku; FinlandiaFil: Hirve, Siddhivinayak. Kem Hospital Research Centre; IndiaFil: Jara, Jorge H.. Universidad del Valle de Guatemala; GuatemalaFil: Katz, Mark A.. Clalit Research Institute; IsraelFil: Khuri Bulos, Najwa. University Of Jordan School Of Medicine; JordaniaFil: Krishnan, Anand. All India Institute Of Medical Sciences; IndiaFil: de Leon, Oscar. Universidad del Valle de Guatemala; GuatemalaFil: Lucero, Marilla G.. Research Institute For Tropical Medicine; FilipinasFil: McCracken, John P.. Universidad del Valle de Guatemala; GuatemalaFil: Mira-Iglesias, Ainara. Fundación Para El Fomento de la Investigación Sanitaria; EspañaFil: Moïsi, Jennifer C.. Agence de Médecine Préventive; FranciaFil: Munywoki, Patrick K.. No especifíca;Fil: Ourohiré, Millogo. No especifíca;Fil: Polack, Fernando Pedro. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Rahi, Manveer. University of Edinburgh; Reino UnidoFil: Rasmussen, Zeba A.. National Institutes Of Health; Estados UnidosFil: Rath, Barbara A.. Vienna Vaccine Safety Initiative; AlemaniaFil: Saha, Samir K.. Child Health Research Foundation; BangladeshFil: Simões, Eric A.F.. University of Colorado; Estados UnidosFil: Sotomayor, Viviana. Ministerio de Salud de Santiago de Chile; ChileFil: Thamthitiwat, Somsak. Thailand Ministry Of Public Health; TailandiaFil: Treurnicht, Florette K.. University of the Witwatersrand; SudáfricaFil: Wamukoya, Marylene. African Population & Health Research Center; KeniaFil: Lay-Myint, Yoshida. Nagasaki University; JapónFil: Zar, Heather J.. University of Cape Town; SudáfricaFil: Campbell, Harry. University of Edinburgh; Reino UnidoFil: Nair, Harish. University of Edinburgh; Reino Unid

    The Predictive Performance of a Pneumonia Severity Score in Human Immunodeficiency Virus-negative Children Presenting to Hospital in 7 Low- and Middle-income Countries.

    Get PDF
    BACKGROUND: In 2015, pneumonia remained the leading cause of mortality in children aged 1-59 months. METHODS: Data from 1802 human immunodeficiency virus (HIV)-negative children aged 1-59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) study with severe or very severe pneumonia during 2011-2014 were used to build a parsimonious multivariable model predicting mortality using backwards stepwise logistic regression. The PERCH severity score, derived from model coefficients, was validated on a second, temporally discrete dataset of a further 1819 cases and compared to other available scores using the C statistic. RESULTS: Predictors of mortality, across 7 low- and middle-income countries, were age <1 year, female sex, ≥3 days of illness prior to presentation to hospital, low weight for height, unresponsiveness, deep breathing, hypoxemia, grunting, and the absence of cough. The model discriminated well between those who died and those who survived (C statistic = 0.84), but the predictive capacity of the PERCH 5-stratum score derived from the coefficients was moderate (C statistic = 0.76). The performance of the Respiratory Index of Severity in Children score was similar (C statistic = 0.76). The number of World Health Organization (WHO) danger signs demonstrated the highest discrimination (C statistic = 0.82; 1.5% died if no danger signs, 10% if 1 danger sign, and 33% if ≥2 danger signs). CONCLUSIONS: The PERCH severity score could be used to interpret geographic variations in pneumonia mortality and etiology. The number of WHO danger signs on presentation to hospital could be the most useful of the currently available tools to aid clinical management of pneumonia

    Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study

    Get PDF
    BackgroundSeasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middle-income countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018.MethodsWe estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and population-based childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries.FindingsIn 2018, among children under 5 years globally, there were an estimated 109·5 million influenza virus episodes (uncertainty range [UR] 63·1–190·6), 10·1 million influenza-virus-associated ALRI cases (6·8–15·1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000–1 415 000), 15 300 in-hospital deaths (5800–43 800), and up to 34 800 (13 200–97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries.InterpretationA large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middle-income countries.</div

    Digitally recorded and remotely classified lung auscultation compared with conventional stethoscope classifications among children aged 1-59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) case-control study.

    Get PDF
    BACKGROUND: Diagnosis of pneumonia remains challenging. Digitally recorded and remote human classified lung sounds may offer benefits beyond conventional auscultation, but it is unclear whether classifications differ between the two approaches. We evaluated concordance between digital and conventional auscultation. METHODS: We collected digitally recorded lung sounds, conventional auscultation classifications and clinical measures and samples from children with pneumonia (cases) in low-income and middle-income countries. Physicians remotely classified recordings as crackles, wheeze or uninterpretable. Conventional and digital auscultation concordance was evaluated among 383 pneumonia cases with concurrently (within 2 hours) collected conventional and digital auscultation classifications using prevalence-adjusted bias-adjusted kappa (PABAK). Using an expanded set of 737 cases that also incorporated the non-concurrently collected assessments, we evaluated whether associations between auscultation classifications and clinical or aetiological findings differed between conventional or digital auscultation using χ2 tests and logistic regression adjusted for age, sex and site. RESULTS: Conventional and digital auscultation concordance was moderate for classifying crackles and/or wheeze versus neither crackles nor wheeze (PABAK=0.50), and fair for crackles-only versus not crackles-only (PABAK=0.30) and any wheeze versus no wheeze (PABAK=0.27). Crackles were more common on conventional auscultation, whereas wheeze was more frequent on digital auscultation. Compared with neither crackles nor wheeze, crackles-only on both conventional and digital auscultation was associated with abnormal chest radiographs (adjusted OR (aOR)=1.53, 95% CI 0.99 to 2.36; aOR=2.09, 95% CI 1.19 to 3.68, respectively); any wheeze was inversely associated with C-reactive protein >40 mg/L using conventional auscultation (aOR=0.50, 95% CI 0.27 to 0.92) and with very severe pneumonia using digital auscultation (aOR=0.67, 95% CI 0.46 to 0.97). Crackles-only on digital auscultation was associated with mortality compared with any wheeze (aOR=2.70, 95% CI 1.12 to 6.25). CONCLUSIONS: Conventional auscultation and remotely-classified digital auscultation displayed moderate concordance for presence/absence of wheeze and crackles among cases. Conventional and digital auscultation may provide different classification patterns, but wheeze was associated with decreased clinical severity on both

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    Get PDF
    Background Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (= 65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control.Methods In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5 degrees by 5 degrees grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628.Findings We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0.3 months [95% CI -0.3 to 0.9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3.8 months [3.6 to 4.0]) in temperate sites and longer duration (5.2 months [4.9 to 5.5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4.6 months [4.3 to 4.8]), as it was for metapneumovirus (4.8 months [4.4 to 5.1]). By comparison, parainfluenza virus had longer duration of epidemics (6.3 months [6.0 to 6.7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus -0.2 months [-0.6 to 0.1]; respiratory syncytial virus 0.1 months [-0.2 to 0.4]).Interpretation This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd

    Association of C-reactive protein with bacterial and respiratory syncytial virus-associated pneumonia among children aged <5 years in the PERCH study

    Get PDF
    Background. Lack of a gold standard for identifying bacterial and viral etiologies of pneumonia has limited evaluation of C-reactive protein (CRP) for identifying bacterial pneumonia. We evaluated the sensitivity and specificity of CRP for identifying bacterial vs respiratory syncytial virus (RSV) pneumonia in the Pneumonia Etiology Research for Child Health (PERCH) multicenter case-control study. Methods. We measured serum CRP levels in cases with World Health Organization-defined severe or very severe pneumonia and a subset of community controls. We evaluated the sensitivity and specificity of elevated CRP for "confirmed" bacterial pneumonia (positive blood culture or positive lung aspirate or pleural fluid culture or polymerase chain reaction [PCR]) compared to "RSV pneumonia" (nasopharyngeal/oropharyngeal or induced sputum PCR-positive without confirmed/suspected bacterial pneumonia). Receiver operating characteristic (ROC) curves were constructed to assess the performance of elevated CRP in distinguishing these cases. Results. Among 601 human immunodeficiency virus (HIV)-negative tested controls, 3% had CRP ≥40 mg/L. Among 119 HIVnegative cases with confirmed bacterial pneumonia, 77% had CRP ≥40 mg/L compared with 17% of 556 RSV pneumonia cases. The ROC analysis produced an area under the curve of 0.87, indicating very good discrimination; a cut-point of 37.1 mg/L best discriminated confirmed bacterial pneumonia (sensitivity 77%) from RSV pneumonia (specificity 82%). CRP ≥100 mg/L substantially improved specificity over CRP ≥40 mg/L, though at a loss to sensitivity. Conclusions. Elevated CRP was positively associated with confirmed bacterial pneumonia and negatively associated with RSV pneumonia in PERCH. CRP may be useful for distinguishing bacterial from RSV-associated pneumonia, although its role in discriminating against other respiratory viral-associated pneumonia needs further study

    Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study

    Get PDF
    Background Pneumonia is the leading cause of death among children younger than 5 years. In this study, we estimated causes of pneumonia in young African and Asian children, using novel analytical methods applied to clinical and microbiological findings. Methods We did a multi-site, international case-control study in nine study sites in seven countries: Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, and Zambia. All sites enrolled in the study for 24 months. Cases were children aged 1–59 months admitted to hospital with severe pneumonia. Controls were age-group-matched children randomly selected from communities surrounding study sites. Nasopharyngeal and oropharyngeal (NP-OP), urine, blood, induced sputum, lung aspirate, pleural fluid, and gastric aspirates were tested with cultures, multiplex PCR, or both. Primary analyses were restricted to cases without HIV infection and with abnormal chest x-rays and to controls without HIV infection. We applied a Bayesian, partial latent class analysis to estimate probabilities of aetiological agents at the individual and population level, incorporating case and control data. Findings Between Aug 15, 2011, and Jan 30, 2014, we enrolled 4232 cases and 5119 community controls. The primary analysis group was comprised of 1769 (41·8% of 4232) cases without HIV infection and with positive chest x-rays and 5102 (99·7% of 5119) community controls without HIV infection. Wheezing was present in 555 (31·7%) of 1752 cases (range by site 10·6–97·3%). 30-day case-fatality ratio was 6·4% (114 of 1769 cases). Blood cultures were positive in 56 (3·2%) of 1749 cases, and Streptococcus pneumoniae was the most common bacteria isolated (19 [33·9%] of 56). Almost all cases (98·9%) and controls (98·0%) had at least one pathogen detected by PCR in the NP-OP specimen. The detection of respiratory syncytial virus (RSV), parainfluenza virus, human metapneumovirus, influenza virus, S pneumoniae, Haemophilus influenzae type b (Hib), H influenzae non-type b, and Pneumocystis jirovecii in NP-OP specimens was associated with case status. The aetiology analysis estimated that viruses accounted for 61·4% (95% credible interval [CrI] 57·3–65·6) of causes, whereas bacteria accounted for 27·3% (23·3–31·6) and Mycobacterium tuberculosis for 5·9% (3·9–8·3). Viruses were less common (54·5%, 95% CrI 47·4–61·5 vs 68·0%, 62·7–72·7) and bacteria more common (33·7%, 27·2–40·8 vs 22·8%, 18·3–27·6) in very severe pneumonia cases than in severe cases. RSV had the greatest aetiological fraction (31·1%, 95% CrI 28·4–34·2) of all pathogens. Human rhinovirus, human metapneumovirus A or B, human parainfluenza virus, S pneumoniae, M tuberculosis, and H influenzae each accounted for 5% or more of the aetiological distribution. We observed differences in aetiological fraction by age for Bordetella pertussis, parainfluenza types 1 and 3, parechovirus–enterovirus, P jirovecii, RSV, rhinovirus, Staphylococcus aureus, and S pneumoniae, and differences by severity for RSV, S aureus, S pneumoniae, and parainfluenza type 3. The leading ten pathogens of each site accounted for 79% or more of the site's aetiological fraction. Interpretation In our study, a small set of pathogens accounted for most cases of pneumonia requiring hospital admission. Preventing and treating a subset of pathogens could substantially affect childhood pneumonia outcomes
    corecore