83 research outputs found

    Gas Turbine Configuration for Improving the performance of Combined Cycle Power Plant

    Get PDF
    AbstractThe thermodynamic analysis of combined cycle gas turbine with effect different configuration for gas turbine are presented and discussed in this paper. The effects of ambient temperature and compression ratio have been proposed to select optimum configuration for gas turbine and its effect on CCGT performance. The analysis performance code has been performed used the MATLAB software. The simulating code for gas turbine configuration results show that the simple gas turbine configuration is more suitable with regards to power output, but the regenerative gas turbine configuration has higher efficiency with effect ambient temperature. The simple gas turbine configuration has higher power output with effect the compression ratio, while the regenerative gas turbine configuration has higher efficiency with effect lower compression ratio, therefore the variation of total power output is insignificance at lower compression ratio. The extensive modelling performed in this study reveals that, the ambient temperature and compression ratios are strongly influence on the performance of combined cycle, a higher overall efficiency can be achieved for combined cycle with add regenerative to topping cycle

    Adaptive Dynamic Inverse Controller for Advanced Coupled Tank Liquid Levels System

    Get PDF
    Inversion technique has been successfully applied in the tracking control of many Multi Input Multi Output (MIMO) process of engineering as well as science. The difficulty in controller design on account of variations in process dynamics as well as interactions between process variables. In this paper, the combination of neural network and dynamic inversion control is applied in Coupled Tank System (CTS) tracking water level problem. The liquids need to be pumped in total process and stored in the two tanks which are coupled together for certain desired level. Transfer function matrix of the system is gained experimentally from the tension loop response of the system. The PID neural network (PID-NN) controller used as a desired system control. Within MATLAB environment, conduction of simulate experiment is to testify the operation of the system according to Settling Time, Rise Time, Steady State Error and Overshoot. Numerical simulations and experiments have both been conducted to prove the validity of the proposed method. It has been attested that capabilities of CTS are ameliorated by suggested proposed method

    Performance, Combustion Characteristics and Emission Tests of Single Cylinder Engine Running on Fusel Oil - Diesel Blended (F20) Fuel

    Get PDF
    Alcohols produced from a renewable source are amongst the important alternative fuels for internal combustion engines. Investigations on alternative fuels for compression ignition engines regarded as one of the major research areas. This paper details an experimental examination of the performance and emissions in single cylinder compression ignition engines operating with fusel oil F20 and pure diesel F0 at five engine speeds and 50% engine load. The test results indicated that the engine power and torque slightly decrease with the F20 at low speeds compared with pure diesel. Further, the in-cylinder pressure was decreased at all engine speed for F20 in comparison with pure diesel. The volumetric efficiency and fuel consumption were increased for F20 due the low heating value of fusel oil. The results showed that CO2 and CO emissions were increased because of the water content, low heating value and low cetane number for fusel oil. The maximum reduction in NOx emissions was 18% for F20 at 1500 rpm

    Performance and Combustion Characteristics of an SI Engine Fueled With Fusel Oil-Gasoline at Different Water Content

    Get PDF
    The main objective of the current study is to investigate the impacts of fusel oil-gasoline blends with different water content on performance and combustion characteristics of an SI engine. The water content of fusel oil is reduced by employing rotary extractor method. The parameters examined in the current study are the effects of test fuels upon engine performance criteria, fuel combustion, location of CA50 and coefficient of variation of indicated mean effective pressure (COVIMEP). The experiments are conducted in a SI engine with two blending ratio of gasoline-fusel oil (FBWE10 and FAWE10) in addition to pure gasoline as a standard fuel under different engine speeds and constant 45% of WOT engine load. The study results reveal that engine power, torque, and brake thermal efficiency have slightly improved with fusel oil-gasoline blends that were obvious clearly after reduction of water content. On the other hand, though the brake specific fuel consumption of FAWE10 slightly improve compared to FBWE10 but still higher than gasoline. Furthermore, the peak in-cylinder pressure, rate of heat release, and rate of pressure rise enhanced with fusel oil-gasoline blends. The (CA 0–10) and (CA 10–90) duration could be simultaneously decreased by reducing the water content of fusel oil, all of that are helpful to improve the stability of combustion and thought to be reasons for the reduction in COVIMEP. As a conclusion, the reduction of fusel oil water content has played positively to enhance the combustion and performance characteristics of the fuel blend and result in more stable engine operation

    CURVATURE DUCTILITYOF REINFORCED CONCRETE BEAM SECTIONS STIFFENED WITH STEEL PLATES

    Get PDF
    This paper presents theoretical parametric study of the curvature ductility capacity for reinforced concrete beam sections stiffened with steel plates. The study considers the behavior of concrete and reinforcing steel under different strain rates. A computer program has been written to compute the curvature ductility taking into account the spalling in concrete cover. Strain rate sensitive constitutive models of steel and concrete were used for predicting the moment-curvature relationship of reinforced concrete beams at different rate of straining. The study parameters are the yield strength of main reinforcement, yield strength of transverse reinforcement, compressive strength of concrete, spacing of stirrups and steel plate thickness. The results indicated that higher strain rates improve both the curvature ductility and the moment capacity of reinforced concrete beam sections. Moreover the section curvature ductility increases as the thickness of the stiffening plates decreases

    Implementation of Adaptive Neuro-fuzzy Model to Optimize Operational Process of Multiconfiguration Gas-Turbines

    Get PDF
    In this article, the adaptive neuro-fuzzy inference system (ANFIS) and multiconfiguration gas-turbines are used to predict the optimal gas-turbine operating parameters. The principle formulations of gas-turbine configurations with various operating conditions are introduced in detail. The effects of different parameters have been analyzed to select the optimum gas-turbine configuration. The adopted ANFIS model has five inputs, namely, isentropic turbine efficiency (Teff), isentropic compressor efficiency (Ceff), ambient temperature (T1), pressure ratio (rp), and turbine inlet temperature (TIT), as well as three outputs, fuel consumption, power output, and thermal efficiency. Both actual reported information, from Baiji Gas-Turbines of Iraq, and simulated data were utilized with the ANFIS model. The results show that, at an isentropic compressor efficiency of 100% and turbine inlet temperature of 1900 K, the peak thermal efficiency amounts to 63% and 375 MW of power resulted, which was the peak value of the power output. Furthermore, at an isentropic compressor efficiency of 100% and a pressure ratio of 30, a peak specific fuel consumption amount of 0.033 kg/kWh was obtained. The predicted results reveal that the proposed model determines the operating conditions that strongly influence the performance of the gas-turbine. In addition, the predicted results of the simulated regenerative gas-turbine (RGT) and ANFIS model were satisfactory compared to that of the foregoing Baiji Gas-Turbines

    A comprehensive review on the exergy analysis of combined cycle power plants

    Get PDF
    The arriving optimum improvement of a thermodynamic system of energy conversion such as a combined cycle power plant (CCPP) is complicated due to the existence of different factors. Energy and exergy analysis is utilized as effective methods to determine both the quantity and quality of the energy sources. This paper reviews the latest thermodynamics analysis on each system components of a CCPP independently and determine the exergy destruction of the plant. A few layouts of the CCPP plant from different locations considered as case studies. In fact, the most energy losses occurred in the condenser compared with the plant components. It found that in the combustion chamber (CC) the highest exergy destruction occurred. The ambient temperature causes an evident decrement in the power production by the gas turbine (GT). The result has proved that besides energy, exergy analysis is an efficient way to the assessment of the performance of the CCPP by recommending a more advantageous configuration of the CCPP plant, which would lead to reductions in fuel required and emissions of air pollutants

    Effects Of Cycle Peak Temperature Ratio On The Performance Of Combined Cycle Power Plant

    Get PDF
    Combined cycle power plant (CCPP) is currently the most promising technology to generate power at higher plant thermal efficiencies. The effects of the cycle peak temperature ratio on the improvement of the performance of the combined cycle power plant had been proposed. The MATLAB code was developed to utilize the performance of the CCPP. The results of this study showed that the overall thermal efficiency increased with the increase of cycle peak temperature ratio and decreased with the increase of air fuel ratio. Also, the increase of the cycle peak temperature ratio as well as the increase of the isentropic compressor efficiency led to the increase of the total power output. The thermal efficiencies for CCPP were higher compared to the gas turbine power plan

    Effects of Operation Conditions on Performance of a Gas Turbine Power Plant

    Get PDF
    This paper presents the effect of operation conditions (compression ratio, turbine inlet temperature, air to fuel ratio and efficiency of compressor and turbine) on the performance of gas turbine power plant. The computational model was developed utilizing the MATLAB codes. Turbine work found to be decreases as ambient temperature increases as well as the thermal efficiency decreases. It can be seen that the thermal efficiency increases linearly with increases of compression ratio while decreases of ambient temperature. The specific fuel consumption increases with increases of ambient temperature and lower turbine inlet temperature. The effect of variation of SFC is more significance at higher ambient temperature than lower temperature. It is observed that the thermal efficiency linearly increases at lower compressor ratio as well as higher turbine inlet temperature until certain value of compression ratio. The variation of thermal efficiency is more significance at higher compression ratio and lower turbine inlet temperature. Even though at lower turbine inlet temperature is decrement the thermal efficiency dramatically and the SFC decreases linearly with increases of compression ratio and turbine inlet temperature at lower range until certain value then increases dramatically for lower turbine inlet temperature

    Effects of Isentropic Efficiency and Enhancing Strategies on Gas Turbine Performance

    Get PDF
    Owing to their numerous advantages, gas turbine (GT) power plants have become an important technology for power generation. This paper presents a parametric analysis for different configurations of GT plants, considering the effects of isentropic compressor and turbine efficiency, which allows the selection of the optimum GT configuration for the optimum performance of a GT power plant. The computational model was developed utilizing MATLAB software. The simulated results show that the reheat GT configuration has higher power output, whereas the regenerative GT configuration has higher thermal efficiency, when considering the effects of isentropic compressor and turbine efficiency. The maximum thermal efficiency of 52.4% and the maximum power output of 268 MW are obtained with isentropic turbine efficiency. The result reveals that isentropic compressor and turbine efficiency influence significantly the performance of GTs
    • …
    corecore