15 research outputs found

    A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response

    Get PDF
    International audienceIntracellular pathogens such as Listeria monocytogenesListeria\ monocytogenes subvert cellular functions through the interaction of bacterial effectors with host components. Here we found that a secreted listerial virulence factor, LntA, could target the chromatin repressor BAHD1 in the host cell nucleus to activate interferon IFN-stimulated genes (ISGs). IFN-λ\lambda expression was induced in response to infection of epithelial cells with bacteria lacking LntA; however, the BAHD1-chromatin associated complex repressed downstream ISGs. In contrast, in cells infected with lntAlntA-expressing bacteria, LntA prevented BAHD1 recruitment to ISGs and stimulated their expression. Murine listeriosis decreased in BAHD1+/−^{+/-} mice or when lntAlntA was constitutively expressed. Thus, the LntA-BAHD1 interplay may modulate IFN-λ\lambda-mediated immune response to control bacterial colonization of the host

    An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling.

    Get PDF
    RNA-binding proteins (RBPs) perform key cellular activities by controlling the function of bound RNAs. The widely held assumption that RBPs are strictly intracellular has been challenged by the discovery of secreted RBPs. However, extracellular RBPs have been described in eukaryotes, while secreted bacterial RBPs have not been reported. Here, we show that the bacterial pathogen Listeria monocytogenes secretes a small RBP that we named Zea. We show that Zea binds a subset of L. monocytogenes RNAs, causing their accumulation in the extracellular medium. Furthermore, during L. monocytogenes infection, Zea binds RIG-I, the non-self-RNA innate immunity sensor, potentiating interferon-ÎČ production. Mouse infection studies reveal that Zea affects L. monocytogenes virulence. Together, our results unveil that bacterial RNAs can be present extracellularly in association with RBPs, acting as "social RNAs" to trigger a host response during infection

    Septins Regulate Bacterial Entry into Host Cells

    Get PDF
    Background: Septins are conserved GTPases that form filaments and are required in many organisms for several processes including cytokinesis. We previously identified SEPT9 associated with phagosomes containing latex beads coated with the Listeria surface protein InlB. Methodology/Principal Findings: Here, we investigated septin function during entry of invasive bacteria in non-phagocytic mammalian cells. We found that SEPT9, and its interacting partners SEPT2 and SEPT11, are recruited as collars next to actin at the site of entry of Listeria and Shigella. SEPT2-depletion by siRNA decreased bacterial invasion, suggesting that septins have roles during particle entry. Incubating cells with InlB-coated beads confirmed an essential role for SEPT2. Moreover, SEPT2-depletion impaired InlB-mediated stimulation of Met-dependent signaling as shown by FRET. Conclusions/Significance: Together these findings highlight novel roles for SEPT2, and distinguish the roles of septin an

    Organisation des transcrits et sequence nucleotidique de la region SALI-F du genome du FV 3 (frog virus 3)

    No full text
    CNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc

    Bacterial FtsZ induces mitochondrial fission in human cells

    No full text
    Posté le 24 janvier 2020 sur BioRxivMitochondria are key eukaryotic organelles that evolved from an intracellular bacterium, in a process involving bacterial genome rearrangement and streamlining. As mitochondria cannot form de novo , their biogenesis relies on growth and division. In human cells, mitochondrial division plays an important role in processes as diverse as mtDNA distribution, mitochondrial transport and quality control. Consequently, defects in mitochondrial division have been associated with a wide range of human pathologies. While several protists have retained key components of the bacterial division machinery, none have been detected in human mitochondria, where the dynamin-related protein Drp1, a cytosolic GTPase is recruited to the mitochondrial outer membrane, forming helical oligomers that constrict and divide mitochondria. Here, we created a human codon optimized version of FtsZ, the central component of the bacterial division machinery, and fused it to a mitochondrial targeting sequence. Upon expression in human cells, mt-FtsZ was imported into the mitochondrial matrix, specifically localizing at fission sites prior to Drp1 and significantly increasing mitochondrial fission levels. Our data suggests that human mitochondria have an internal, matrix-localized fission machinery, whose structure is sufficiently conserved as to accommodate bacterial FtsZ. We identified interaction partners of mt-FtsZ, and show that expression of PGAM5, FAM210, SFXN3 and MTCH1 induced mitochondrial fission. Our results thus represent an innovative approach for the discovery of novel critical mitochondrial fission components

    Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system

    No full text
    International audienceStromal cell-derived factor 1 (SDF-1) is an alpha-chemokine that stimulates migration of haematopoietic progenitor cells and development of the immune system. SDF-1 is also abundantly and selectively expressed in the developing and mature CNS, as we show here. At embryonic day 15, SDF-1 transcripts were detected in the germinal periventricular zone and in the deep layer of the forming cerebral cortex. At birth, granule cells in the cerebellum and glial cells of the olfactory bulb outer layer showed an SDF-1 in situ hybridization signal that decreased progressively within the next 2 weeks. In other regions such as cortex, thalamus and hippocampus, SDF-1 transcripts detected at birth progressively increased in abundance during the postnatal period. SDF-1 protein was identified by immunoblot and/or immunocytochemistry in most brain regions where these transcripts were detected. SDF-1 was selectively localized in some thalamic nuclei and neurons of the fifth cortical layer as well as in pontine and brainstem nuclei which relay the nociceptive response. The presence of SDF-1 transcripts in cerebellar granule cells was correlated with their migration from the external to the inner granular layers with disappearance of the signal when migration was completed. In contrast, SDF1 mRNA signal increased during formation of the hippocampal dentate gyrus and stayed high in this region throughout life. The selective and regulated expression of SDF-1 in these regions suggests a role in precursor migration, neurogenesis and, possibly, synaptogenesis. Thus this alpha chemokine may be as essential to nervous system function as it is to the immune system

    Tetraspanin CD81 Is Required for Listeria monocytogenes Invasion ▿ †

    No full text
    Listeria monocytogenes is an intracellular bacterial pathogen that invades epithelial cells by subverting two cellular receptors, E-cadherin and Met. We recently identified type II phosphatidylinositol 4-kinases α and ÎČ (PI4KIIα and PI4KIIÎČ) as being required for bacterial entry downstream of Met. In this work, we investigated whether tetraspanins CD9, CD63, and CD81, which figure among the few described molecular partners of PI4KIIα, function as molecular adaptors recruiting PI4KIIα to the bacterial entry site. We observed by fluorescence microscopy that CD9, CD63, and CD81 are expressed and detected at the cellular surface and also within intracellular compartments, particularly in the case of CD63. In resting cells, colocalization of tetraspanins and PI4KIIα is detectable only in restricted areas of the perinuclear region. Upon infection with Listeria, endogenous CD9, CD63, and CD81 were recruited to the bacterial entry site but did not colocalize strictly with endogenous PI4KIIα. Live-cell imaging confirmed that tetraspanins and PI4KIIα do not follow the same recruitment dynamics to the Listeria entry site. Depletion of CD9, CD63, and CD81 levels by small interfering RNA demonstrated that CD81 is required for bacterial internalization, identifying for the first time a role for a member of the tetraspanin family in the entry of Listeria into target cells. Moreover, depletion of CD81 inhibits the recruitment of PI4KIIα but not that of the Met receptor to the bacterial entry site, suggesting that CD81 may act as a membrane organizer required for the integrity of signaling events occurring at Listeria entry sites

    An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition

    No full text
    International audienceRecent data support the hypothesis that Gram-positive bacteria (monoderms) arose from Gram-negative ones (diderms) through loss of the outer membrane (OM), but how this happened remains unknown. As tethering of the OM is essential for cell envelope stability in diderm bacteria, its destabilization may have been involved in this transition. In the present study, we present an in-depth analysis of the four known main OM-tethering systems across the Tree of Bacteria (ToB). We show that the presence of such systems follows the ToB with a bimodal distribution matching the deepest phylogenetic divergence between Terrabacteria and Gracilicutes. Whereas the lipoprotein peptidoglycan-associated lipoprotein (Pal) is restricted to the Gracilicutes, along with a more sporadic occurrence of OmpA, and Braun's lipoprotein is present only in a subclade of Gammaproteobacteria, diderm Terrabacteria display, as the main system, the OmpM protein. We propose an evolutionary scenario whereby OmpM represents a simple, ancestral OM-tethering system that was later replaced by one based on Pal after the emergence of the Lol machinery to deliver lipoproteins to the OM, with OmpA as a possible transition state. We speculate that the existence of only one main OM-tethering system in the Terrabacteria would have allowed the multiple OM losses specifically inferred in this clade through OmpM perturbation, and we provide experimental support for this hypothesis by inactivating all four ompM gene copies in the genetically tractable diderm Firmicute Veillonella parvula. High-resolution imaging and tomogram reconstructions reveal a non-lethal phenotype in which vast portions of the OM detach from the cells, forming huge vesicles with an inflated periplasm shared by multiple dividing cells. Together, our results highlight an ancient shift of OM-tethering systems in bacterial evolution and suggest a mechanism for OM loss and the multiple emergences of the monoderm phenotype from diderm ancestors

    Entrapment of Intracytosolic Bacteria by Septin Cage-like Structures

    Get PDF
    International audienceActin-based motility is used by various pathogens for dissemination within and between cells. Yet host factors restricting this process have not been identified. Septins are GTP-binding proteins that assemble as filaments and are essential for cell division. However, their role during interphase has remained elusive. Here, we report that septin assemblies are recruited to different bacteria that polymerize actin. We observed that intracytosolic Shigella either become compartmentalized in septin cage-like structures or form actin tails. Inactivation of septin caging increases the number of Shigella with actin tails and enhances cell-to-cell spread. TNF-α, a host cytokine produced upon Shigella infection, stimulates septin caging and restricts actin tail formation and cell-to-cell spread. Finally, we show that septin cages entrap bacteria targeted to autophagy. Together, these results reveal an unsuspected mechanism of host defense that restricts dissemination of invasive pathogens

    A role for septin 2 in Drp1-mediated mitochondrial fission

    No full text
    Mitochondria are essential eukaryotic organelles often forming intricate networks. The overall network morphology is determined by mitochondrial fusion and fission. Among the multiple mechanisms that appear to regulate mitochondrial fission, the ER and actin have recently been shown to play an important role by mediating mitochondrial constriction and promoting the action of a key fission factor, the dynamin-like protein Drp1. Here, we report that the cytoskeletal component septin 2 is involved in Drp1-dependent mitochondrial fission in mammalian cells. Septin 2 localizes to a subset of mitochondrial constrictions and directly binds Drp1, as shown by immunoprecipitation of the endogenous proteins and by pulldown assays with recombinant proteins. Depletion of septin 2 reduces Drp1 recruitment to mitochondria and results in hyperfused mitochondria and delayed FCCP-induced fission. Strikingly, septin depletion also affects mitochondrial morphology in Caenorhabditis elegans, strongly suggesting that the role of septins in mitochondrial dynamics is evolutionarily conserved
    corecore