7 research outputs found

    Electrochemical Reduction as a Powerful Tool to Highlight the Possible Formation of By-Products More Toxic Than Sudan III Dye

    Get PDF
    The present work describes the electrochemical reduction of the azo dye Sudan III in methanol/0.01 mol l(-1) Bu4NBF4 at applied potential of -1.2V, which promotes 98% discoloration of the commercial sample. The reduction products were analyzed by high performance liquid chromatography, after optimized conditions for 20 aromatic amines with carcinogenic potentiality. The harmful compounds such as: aniline, benzidine, o-toluidine, 2,6-dimethylaniline, 4,4'-oxydianiline, 4,4'-metileno-bis-2-methylaniline and 4-aminobiphenyl are formed after azo bond cleavage. The electrochemical reduction is compared with chemical reduction by using sodium thiosulfate. Our findings illustrates that commercial Sudan III under reductive condition can forms a number of products, which some are known active genotoxins. The technique could be used to mimic important redox reactions in human metabolism or environment, highlighting the possible formation of by-products more toxic than the original dyes.FAPESPFAPESPCNPQCNPqCAPESCAPE

    Identification of Sudan III-(deoxy)-guanosine adducts formed in situ in a reaction with no catalyst

    No full text
    Incubation of guanosine and Sudan III induces the formation of a stable adduct, which may be identified using a spectrophotometric technique and mass spectroscopy. The high nucleophilicity of the C-8 position and its proximity to N-7 makes the site susceptible to a nucleophilic attack, which explains the S(N)2 reaction detected between guanosine and Sudan III dye. In addition, direct interaction of Sudan III with calf thymus DNA was monitored using a simple spectrophotometric technique. The results presented indicate that a simple modification of the chemical structure of Sudan I (monoazo dye) to Sudan III (diazo dye) markedly alters reactivity towards nitrogenous DNA bases.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    A química e toxicidade dos corantes de cabelo

    No full text
    The market for hair dye involves a growing range of products, which requires greater understanding of hair properties, mechanisms of action and color development. In this work, we present a critical analysis of the classification, physical and chemical characteristics, chemical analysis and toxicological/mutagenic potential of dyes used in the hair dyeing process. A compilation of some studies was carried out, focusing on the available knowledge about these dyes and their effects on the environment and human health

    THE CHEMISTRY AND TOXICITY OF HAIR DYES

    No full text
    The market for hair dye involves a growing range of products, which requires greater understanding of hair properties, mechanisms of action and color development. In this work, we present a critical analysis of the classification, physical and chemical characteristics, chemical analysis and toxicological/mutagenic potential of dyes used in the hair dyeing process. A compilation of some studies was carried out, focusing on the available knowledge about these dyes and their effects on the environment and human health

    Next Generation Sequencing Workshop at the Royal Society of Medicine (London, May 2022): how genomics is on the path to modernizing genetic toxicology

    No full text
    The use of error-corrected Next Generation Sequencing (ecNG) to determine mutagenicity has been a subject of growing interest and potentially a disruptive technology that could supplement, and in time, replace current testing paradigms in preclinical safety assessment. Considering this, a Next Generation Sequencing Workshop was held at the Royal Society of Medicine in London in May 2022, supported by the United Kingdom Environmental Mutagen Society (UKEMS) and TwinStrand Biosciences (WA, USA), to discuss progress and future applications of this technology. In this meeting report, the invited speakers provide an overview of the Workshop topics covered and identify future directions for research. In the area of somatic mutagenesis, several speakers reviewed recent progress made with correlating ecNGS to classic in vivo transgenic rodent mutation assays as well as exploring the use of this technology directly in humans and animals, and in complex organoid models. Additionally, ecNGS has been used for detecting off-target effects of gene editing tools and emerging data suggest ecNGS potential to measure clonal expansion of cells carrying mutations in cancer driver genes as an early marker of carcinogenic potential and for direct human biomonitoring. As such, the workshop demonstrated the importance of raising awareness and support for advancing the science of ecNGS for mutagenesis, gene editing, and carcinogenesis research. Furthermore, the potential of this new technology to contribute to advances in drug and product development and improve safety assessment was extensively explored
    corecore