60 research outputs found

    An Inducer of VGF Protects Cells against ER Stress-Induced Cell Death and Prolongs Survival in the Mutant SOD1 Animal Models of Familial ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease, and recent evidence has suggested that endoplasmic reticulum (ER) stress signaling is involved in the pathogenesis of ALS. Here we identified a small molecule, SUN N8075, which has a marked protective effect on ER stress-induced cell death, in an in vitro cell-based screening, and its protective mechanism was mediated by an induction of VGF nerve growth factor inducible (VGF): VGF knockdown with siRNA completely abolished the protective effect of SUN N8075 against ER-induced cell death, and overexpression of VGF inhibited ER-stress-induced cell death. VGF level was lower in the spinal cords of sporadic ALS patients than in the control patients. Furthermore, SUN N8075 slowed disease progression and prolonged survival in mutant SOD1 transgenic mouse and rat models of ALS, preventing the decrease of VGF expression in the spinal cords of ALS mice. These data suggest that VGF plays a critical role in motor neuron survival and may be a potential new therapeutic target for ALS, and SUN N8075 may become a potential therapeutic candidate for treatment of ALS

    Expression Profiling of a Genetic Animal Model of Depression Reveals Novel Molecular Pathways Underlying Depressive-Like Behaviours

    Get PDF
    The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research

    Genomic Analysis of Individual Differences in Ethanol Drinking: Evidence for Non-Genetic Factors in C57BL/6 Mice

    Get PDF
    Genetic analysis of factors affecting risk to develop excessive ethanol drinking has been extensively studied in humans and animal models for over 20 years. However, little progress has been made in determining molecular mechanisms underlying environmental or non-genetic events contributing to variation in ethanol drinking. Here, we identify persistent and substantial variation in ethanol drinking behavior within an inbred mouse strain and utilize this model to identify gene networks influencing such “non-genetic” variation in ethanol intake. C57BL/6NCrl mice showed persistent inter-individual variation of ethanol intake in a two-bottle choice paradigm over a three-week period, ranging from less than 1 g/kg to over 14 g/kg ethanol in an 18 h interval. Differences in sweet or bitter taste susceptibility or litter effects did not appreciably correlate with ethanol intake variation. Whole genome microarray expression analysis in nucleus accumbens, prefrontal cortex and ventral midbrain region of individual animals identified gene expression patterns correlated with ethanol intake. Results included several gene networks previously implicated in ethanol behaviors, such as glutamate signaling, BDNF and genes involved in synaptic vesicle function. Additionally, genes functioning in epigenetic chromatin or DNA modifications such as acetylation and/or methylation also had expression patterns correlated with ethanol intake. In verification for the significance of the expression findings, we found that a histone deacetylase inhibitor, trichostatin A, caused an increase in 2-bottle ethanol intake. Our results thus implicate specific brain regional gene networks, including chromatin modification factors, as potentially important mechanisms underlying individual variation in ethanol intake
    • …
    corecore