428 research outputs found

    Modeling study of human renal chloride channel (hCLC-5) mutations suggests a structural-functional relationship

    Get PDF
    Modeling study of human renal chloride channel (hCLC-5) mutations suggests a structural-functional relationship.BackgroundDent's disease, a renal tubular disorder characterized by low-molecular-weight proteinuria, hypercalciuria, and nephrolithiasis, is due to inactivating mutations in the X-linked renal-specific chloride channel, hCLC-5. The x-ray crystal structures of two bacterial chloride channels (CLCs) have recently been established, thereby allowing us to construct a model for hCLC-5 and further examine the role of its mutations.MethodsThe data regarding 49 hCLC-5 mutations were reviewed. Thirty-four mutations that predicted absent or truncated channels were excluded. The remaining 15 mutations (one in-frame insertion and 14 missense mutations), 12 of which have been studied electrophysiologically, were assessed. The hCLC-5 sequence was aligned with the Salmonella typhimurium and Escherichia coli sequences and used to map the hCLC-5 mutations onto a three-dimensional model.ResultshCLC-5 is a homodimeric protein, with each subunit consisting of 18 helices. None of the missense mutations involved the chloride (Cl−) selectivity filter, but 12 of the 15 mutations were found to be clustered at the interface of the two subunits. Six of these mutations occurred in two of the helices that either form part of the interface or lie in close proximity to the interface, and three other mutations that did not lead to complete loss of Cl− conductance were at the edge of the interface.ConclusionThese results demonstrate a crucial role for the interaction between the two subunits at the interface of the homodimeric hCLC-5

    Mice with an N-Ethyl-N-Nitrosourea (ENU) Induced Tyr209Asn Mutation in Natriuretic Peptide Receptor 3 (NPR3) Provide a Model for Kyphosis Associated with Activation of the MAPK Signaling Pathway

    Get PDF
    Non-syndromic kyphosis is a common disorder that is associated with significant morbidity and has a strong genetic involvement; however, the causative genes remain to be identified, as such studies are hampered by genetic heterogeneity, small families and various modes of inheritance. To overcome these limitations, we investigated 12 week old progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) using phenotypic assessments including dysmorphology, radiography, and dual-energy X-ray absorptiometry. This identified a mouse with autosomal recessive kyphosis (KYLB). KYLB mice, when compared to unaffected littermates, had: thoraco-lumbar kyphosis, larger vertebrae, and increased body length and increased bone area. In addition, female KYLB mice had increases in bone mineral content and plasma alkaline phosphatase activity. Recombination mapping localized the Kylb locus to a 5.5Mb region on chromosome 15A1, which contained 51 genes, including the natriuretic peptide receptor 3 (Npr3) gene. DNA sequence analysis of Npr3 identified a missense mutation, Tyr209Asn, which introduced an N-linked glycosylation consensus sequence. Expression of wild-type NPR3 and the KYLB-associated Tyr209Asn NPR3 mutant in COS-7 cells demonstrated the mutant to be associated with abnormal N-linked glycosylation and retention in the endoplasmic reticulum that resulted in its absence from the plasma membrane. NPR3 is a decoy receptor for C-type natriuretic peptide (CNP), which also binds to NPR2 and stimulates mitogen-activated protein kinase (MAPK) signaling, thereby increasing the number and size of hypertrophic chondrocytes. Histomorphometric analysis of KYLB vertebrae and tibiae showed delayed endochondral ossification and expansion of the hypertrophic zones of the growth plates, and immunohistochemistry revealed increased p38 MAPK phosphorylation throughout the growth plates of KYLB vertebrae. Thus, we established a model of kyphosis due to a novel NPR3 mutation, in which loss of plasma membrane NPR3 expression results in increased MAPK pathway activation, causing elongation of the vertebrae and resulting in kyphosis

    Inhibition of the tyrosine phosphatase SHP-2 suppresses angiogenesis in vitro and in vivo

    Get PDF
    Endothelial cell survival is indispensable to maintain endothelial integrity and initiate new vessel formation. We investigated the role of SHP-2 in endothelial cell survival and angiogenesis in vitro as well as in vivo. SHP-2 function in cultured human umbilical vein and human dermal microvascular endothelial cells was inhibited by either silencing the protein expression with antisense-oligodesoxynucleotides or treatment with a pharmacological inhibitor (PtpI IV). SHP-2 inhibition impaired capillary-like structure formation (p < 0.01; n = 8) in vitro as well as new vessel growth ex vivo (p < 0.05; n = 10) and in vivo in the chicken chorioallantoic membrane (p < 0.01, n = 4). Additionally, SHP-2 knock-down abrogated fibroblast growth factor 2 (FGF-2)-dependent endothelial proliferation measured by MTT reduction ( p ! 0.01; n = 12). The inhibitory effect of SHP-2 knock-down on vessel growth was mediated by increased endothelial apoptosis ( annexin V staining, p ! 0.05, n = 9), which was associated with reduced FGF-2-induced phosphorylation of phosphatidylinositol 3-kinase (PI3-K), Akt and extracellular regulated kinase 1/2 (ERK1/2) and involved diminished ERK1/2 phosphorylation after PI3-K inhibition (n=3). These results suggest that SHP-2 regulates endothelial cell survival through PI3-K-Akt and mitogen-activated protein kinase pathways thereby strongly affecting new vessel formation. Thus, SHP-2 exhibits a pivotal role in angiogenesis and may represent an interesting target for therapeutic approaches controlling vessel growth. Copyright (C) 2007 S. Karger AG, Basel

    Role of Flavin-Containing Monooxygenase in Oxidative Metabolism of Voriconazole by Human Liver Microsomes

    Get PDF
    Voriconazole is a potent second generation triazole antifungal agent with broad-spectrum activity against clinically important fungi. It is cleared predominantly via metabolism in all species tested including humans. N-oxidation of the fluoropyrimidine ring, its hydroxylation, and hydroxylation of the adjacent methyl group are the known pathways of voriconazole oxidative metabolism, with the N-oxide being the major circulating metabolite in human. In vitro studies have shown that CYP2C19, CYP3A4, and to a lesser extent CYP2C9 contribute to the oxidative metabolism of voriconazole. When CYP-specific inhibitors and antibodies were used to evaluate the oxidative metabolism of voriconazole by human liver microsomes (HLM), the results suggested that CYP-mediated metabolism accounted for ~75% of the total oxidative metabolism. The studies presented here provide evidence that the remaining ~25% of the metabolic transformations are catalyzed by flavin-containing monooxygenase (FMO). This conclusion was based on the evidence that the NADPH-dependent metabolism of voriconazole was sensitive to heat (45 °C for 5 min), a condition known to selectively inactivate FMO without affecting CYP activity. The role of FMO in the metabolic formation of voriconazole N-oxide was confirmed by the use of recombinant FMO enzymes. Kinetic analysis of voriconazole metabolism by FMO1 and FMO3 yielded Km values of 3.0 mM and 3.4 mM and Vmax values of 0.025 pmol/min/pmol and 0.044 pmol/min/pmol, respectively. FMO5 did not metabolize voriconazole effectively. This is the first report of the role of FMO in the oxidative metabolism of voriconazole

    Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations of the <it>MEN1 </it>gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome. Our group and others have shown that <it>Men1 </it>disruption in mice recapitulates MEN1 pathology. Intriguingly, rare lesions in hormone-dependent tissues, such as prostate and mammary glands, were also observed in the <it>Men1 </it>mutant mice.</p> <p>Methods</p> <p>To study the occurrence of prostate lesions, we followed a male mouse cohort of 47 <it>Men1</it><sup>+/- </sup>mice and 23 age-matched control littermates, starting at 18 months of age, and analysed the prostate glands from the cohort.</p> <p>Results</p> <p>Six <it>Men1</it><sup>+/- </sup>mice (12.8%) developed prostate cancer, including two adenocarcinomas and four <it>in situ </it>carcinomas, while none of the control mice developed cancerous lesions. The expression of menin encoded by the <it>Men1 </it>gene was found to be drastically reduced in all carcinomas, and partial LOH of the wild-type <it>Men1 </it>allele was detected in three of the five analysed lesions. Using immunostaining for the androgen receptor and p63, a basal epithelial cell marker, we demonstrated that the menin-negative prostate cancer cells did not display p63 expression and that the androgen receptor was expressed but more heterogeneous in these lesions. Furthermore, our data showed that the expression of the cyclin-dependent kinase inhibitor CDKN1B (p27), a <it>Men1 </it>target gene known to be inactivated during prostate cell tumorigenesis, was notably decreased in the prostate cancers that developed in the mutant mice.</p> <p>Conclusion</p> <p>Our work suggests the possible involvement of <it>Men1 </it>inactivation in the tumorigenesis of the prostate gland.</p

    Xanthene Food Dye, as a Modulator of Alzheimer's Disease Amyloid-beta Peptide Aggregation and the Associated Impaired Neuronal Cell Function

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia. AD is a degenerative brain disorder that causes problems with memory, thinking and behavior. It has been suggested that aggregation of amyloid-beta peptide (Aβ) is closely linked to the development of AD pathology. In the search for safe, effective modulators, we evaluated the modulating capabilities of erythrosine B (ER), a Food and Drug Administration (FDA)-approved red food dye, on Aβ aggregation and Aβ-associated impaired neuronal cell function.In order to evaluate the modulating ability of ER on Aβ aggregation, we employed transmission electron microscopy (TEM), thioflavin T (ThT) fluorescence assay, and immunoassays using Aβ-specific antibodies. TEM images and ThT fluorescence of Aβ samples indicate that protofibrils are predominantly generated and persist for at least 3 days. The average length of the ER-induced protofibrils is inversely proportional to the concentration of ER above the stoichiometric concentration of Aβ monomers. Immunoassay results using Aβ-specific antibodies suggest that ER binds to the N-terminus of Aβ and inhibits amyloid fibril formation. In order to evaluate Aβ-associated toxicity we determined the reducing activity of SH-SY5Y neuroblastoma cells treated with Aβ aggregates formed in the absence or in the presence of ER. As the concentration of ER increased above the stoichiometric concentration of Aβ, cellular reducing activity increased and Aβ-associated reducing activity loss was negligible at 500 µM ER.Our findings show that ER is a novel modulator of Aβ aggregation and reduces Aβ-associated impaired cell function. Our findings also suggest that xanthene dye can be a new type of small molecule modulator of Aβ aggregation. With demonstrated safety profiles and blood-brain permeability, ER represents a particularly attractive aggregation modulator for amyloidogenic proteins associated with neurodegenerative diseases

    Immune response modulation by curcumin in a latex allergy model

    Get PDF
    BACKGROUND: There has been a worldwide increase in allergy and asthma over the last few decades, particularly in industrially developed nations. This resulted in a renewed interest to understand the pathogenesis of allergy in recent years. The progress made in the pathogenesis of allergic disease has led to the exploration of novel alternative therapies, which include herbal medicines as well. Curcumin, present in turmeric, a frequently used spice in Asia has been shown to have anti-allergic and inflammatory potential. METHODS: We used a murine model of latex allergy to investigate the role of curcumin as an immunomodulator. BALB/c mice were exposed to latex allergens and developed latex allergy with a Th2 type of immune response. These animals were treated with curcumin and the immunological and inflammatory responses were evaluated. RESULTS: Animals exposed to latex showed enhanced serum IgE, latex specific IgG(1), IL-4, IL-5, IL-13, eosinophils and inflammation in the lungs. Intragastric treatment of latex-sensitized mice with curcumin demonstrated a diminished Th2 response with a concurrent reduction in lung inflammation. Eosinophilia in curcumin-treated mice was markedly reduced, co-stimulatory molecule expression (CD80, CD86, and OX40L) on antigen-presenting cells was decreased, and expression of MMP-9, OAT, and TSLP genes was also attenuated. CONCLUSION: These results suggest that curcumin has potential therapeutic value for controlling allergic responses resulting from exposure to allergens

    Prostaglandin I2 Signaling Drives Th17 Differentiation and Exacerbates Experimental Autoimmune Encephalomyelitis

    Get PDF
    BACKGROUND: Prostaglandin I(2) (PGI(2)), a lipid mediator currently used in treatment of human disease, is a critical regulator of adaptive immune responses. Although PGI(2) signaling suppressed Th1 and Th2 immune responses, the role of PGI(2) in Th17 differentiation is not known. METHODOLOGY/PRINCIPAL FINDINGS: In mouse CD4(+)CD62L(+) naïve T cell culture, the PGI(2) analogs iloprost and cicaprost increased IL-17A and IL-22 protein production and Th17 differentiation in vitro. This effect was augmented by IL-23 and was dependent on PGI(2) receptor IP signaling. In mouse bone marrow-derived CD11c(+) dendritic cells (BMDCs), PGI(2) analogs increased the ratio of IL-23/IL-12, which is correlated with increased ability of BMDCs to stimulate naïve T cells for IL-17A production. Moreover, IP knockout mice had delayed onset of a Th17-associated neurological disease, experimental autoimmune encephalomyelitis (EAE), and reduced infiltration of IL-17A-expressing mononuclear cells in the spinal cords compared to wild type mice. These results suggest that PGI(2) promotes in vivo Th17 responses. CONCLUSION: The preferential stimulation of Th17 differentiation by IP signaling may have important clinical implications as PGI(2) and its analogs are commonly used to treat human pulmonary hypertension

    Experimental approaches to evaluate activities of cytochromes P450 3A

    Get PDF
    Cytochrome P450 (CYP) is a heme protein oxidizing various xenobiotics, as well as endogenous substrates. Understanding which CYP enzymes are involved in metabolic activation and/or detoxication of different compounds is important in the assessment of an individual's susceptibility to the toxic action of these substances. Therefore, investigation which of several in vitro experimental models are appropriate to mimic metabolism of xenobiotics in organisms is the major challenge for research of many laboratories. The aim of this study was to evaluate the efficiency of different in vitro systems containing individual enzymes of the mixed-function monooxygenase system to oxidize two model substrates of CYP3A enzymes, exogenous and endogenous compounds, α-naphtoflavone (α-NF) and testosterone, respectively. Several different enzymatic systems containing CYP3A enzymes were utilized in the study: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b5 (Supersomes™), (iv) membranes isolated from of Escherichia coli, containing recombinant human CYP3A4 and cytochrome b5, and (v) purified human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b5 in liposomes. The most efficient systems oxidizing both compounds were Supersomes™ containing human CYP3A4 and cytochrome b5. The results presented in this study demonstrate the suitability of the supersomal CYP3A4 systems for studies investigating oxidation of testosterone and α-NF in vitro
    corecore