407 research outputs found

    Miniaturized multisensor system with a thermal gradient: Performance beyond the calibration range

    Get PDF
    Two microchips, each with four identical microstructured sensors using SnO2 nanowires as sensing material (one chip decorated with Ag nanoparticles, the other with Pt nanoparticles), were used as a nano-electronic nose to distinguish five different gases and estimate their concentrations. This innovative approach uses identical sensors working at different operating temperatures thanks to the thermal gradient created by an integrated microheater. A system with in-house developed hardware and software was used to collect signals from the eight sensors and combine them into eight-dimensional data vectors. These vectors were processed with a support vector machine allowing for qualitative and quantitative discrimination of all gases after calibration. The system worked perfectly within the calibrated range (100% correct classification, 6.9% average error on concentration value). This work focuses on minimizing the number of points needed for calibration while maintaining good sensor performance, both for classification and error in estimating concentration. Therefore, the calibration range (in terms of gas concentration) was gradually reduced and further tests were performed with concentrations outside these new reduced limits. Although with only a few training points, down to just two per gas, the system performed well with 96% correct classifications and 31.7% average error for the gases at concentrations up to 25 times higher than its calibration range. At very low concentrations, down to 20 times lower than the calibration range, the system worked less well, with 93% correct classifications and 38.6% average error, probably due to proximity to the limit of detection of the sensors

    Machine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance

    Get PDF
    We investigate the performance of multi-user multiple-antenna downlink systems in which a BS serves multiple users via a shared wireless medium. In order to fully exploit the spatial diversity while minimizing the passive energy consumed by radio frequency (RF) components, the BS is equipped with M RF chains and N antennas, where M < N. Upon receiving pilot sequences to obtain the channel state information, the BS determines the best subset of M antennas for serving the users. We propose a joint antenna selection and precoding design (JASPD) algorithm to maximize the system sum rate subject to a transmit power constraint and QoS requirements. The JASPD overcomes the non-convexity of the formulated problem via a doubly iterative algorithm, in which an inner loop successively optimizes the precoding vectors, followed by an outer loop that tries all valid antenna subsets. Although approaching the (near) global optimality, the JASPD suffers from a combinatorial complexity, which may limit its application in real-time network operations. To overcome this limitation, we propose a learning-based antenna selection and precoding design algorithm (L-ASPA), which employs a DNN to establish underlaying relations between the key system parameters and the selected antennas. The proposed L-ASPD is robust against the number of users and their locations, BS's transmit power, as well as the small-scale channel fading. With a well-trained learning model, it is shown that the L-ASPD significantly outperforms baseline schemes based on the block diagonalization and a learning-assisted solution for broadcasting systems and achieves higher effective sum rate than that of the JASPA under limited processing time. In addition, we observed that the proposed L-ASPD can reduce the computation complexity by 95% while retaining more than 95% of the optimal performance.Comment: accepted to the IEEE Transactions on Wireless Communication

    Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer Optimization Framework

    Full text link
    To enable an intelligent, programmable and multi-vendor radio access network (RAN) for 6G networks, considerable efforts have been made in standardization and development of open RAN (O-RAN). So far, however, the applicability of O-RAN in controlling and optimizing RAN functions has not been widely investigated. In this paper, we jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent traffic steering application in O-RAN. Combining tools from network utility maximization and stochastic optimization, we introduce a multi-layer optimization framework that provides fast convergence, long-term utility-optimality and significant delay reduction compared to the state-of-the-art and baseline RAN approaches. Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iii) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization. Collectively, the insights in this work will open the door towards fully automated networks with enhanced control and flexibility. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms in terms of the convergence rate, long-term utility-optimality and delay reduction.Comment: 15 pages, 10 figures. A short version will be submitted to IEEE GLOBECOM 202

    Defeating Super-Reactive Jammers WithDeception Strategy: Modeling, SignalDetection, and Performance Analysis

    Get PDF
    This paper aims to develop a novel framework to defeat a super-reactive jammer, one of the mostdifficult jamming attacks to deal with in practice. Specifically, the jammer has an unlimited power budgetand is equipped with the self-interference suppression capability to simultaneously attack and listen tothe transmitter’s activities. Consequently, dealing with super-reactive jammers is very challenging. Thus,we introduce a smart deception mechanism to attract the jammer to continuously attack the channel andthen leverage jamming signals to transmit data based on the ambient backscatter communication whichis resilient to radio interference/jamming. To decode the backscattered signals, the maximum likelihood(ML) detector can be adopted. However, the method is notorious for its high computational complexityand require a specific mathematical model for the communication system. Hence, we propose a deeplearning-based detector that can dynamically adapt to any channel and noise distributions. With the LongShort-Term Memory network, our detector can learn the received signals’ dependencies to achieve theperformance close to that of the optimal ML detector. Through simulation and theoretical results, wedemonstrate that with proposed approaches, the more power the jammer uses to attack the channel, thebetter bit error rate performance we can achiev

    Defeating Super-Reactive Jammers WithDeception Strategy: Modeling, SignalDetection, and Performance Analysis

    Get PDF
    This paper aims to develop a novel framework to defeat a super-reactive jammer, one of the mostdifficult jamming attacks to deal with in practice. Specifically, the jammer has an unlimited power budgetand is equipped with the self-interference suppression capability to simultaneously attack and listen tothe transmitter’s activities. Consequently, dealing with super-reactive jammers is very challenging. Thus,we introduce a smart deception mechanism to attract the jammer to continuously attack the channel andthen leverage jamming signals to transmit data based on the ambient backscatter communication whichis resilient to radio interference/jamming. To decode the backscattered signals, the maximum likelihood(ML) detector can be adopted. However, the method is notorious for its high computational complexityand require a specific mathematical model for the communication system. Hence, we propose a deeplearning-based detector that can dynamically adapt to any channel and noise distributions. With the LongShort-Term Memory network, our detector can learn the received signals’ dependencies to achieve theperformance close to that of the optimal ML detector. Through simulation and theoretical results, wedemonstrate that with proposed approaches, the more power the jammer uses to attack the channel, thebetter bit error rate performance we can achiev

    Combination Antifungal Therapy for Cryptococcal Meningitis

    Get PDF
    Background Combination antifungal therapy (amphotericin B deoxycholate and flucytosine) is the recommended treatment for cryptococcal meningitis but has not been shown to reduce mortality, as compared with amphotericin B alone. We performed a randomized, controlled trial to determine whether combining flucytosine or high-dose fluconazole with high-dose amphotericin B improved survival at 14 and 70 days. Methods We conducted a randomized, three-group, open-label trial of induction therapy for cryptococcal meningitis in patients with human immunodeficiency virus infection. All patients received amphotericin B at a dose of 1 mg per kilogram of body weight per day; patients in group 1 were treated for 4 weeks, and those in groups 2 and 3 for 2 weeks. Patients in group 2 concurrently received flucytosine at a dose of 100 mg per kilogram per day for 2 weeks, and those in group 3 concurrently received fluconazole at a dose of 400 mg twice daily for 2 weeks. Results A total of 299 patients were enrolled. Fewer deaths occurred by days 14 and 70 among patients receiving amphotericin B and flucytosine than among those receiving amphotericin B alone (15 vs. 25 deaths by day 14; hazard ratio, 0.57; 95% confidence interval [CI], 0.30 to 1.08; unadjusted P=0.08; and 30 vs. 44 deaths by day 70; hazard ratio, 0.61; 95% CI, 0.39 to 0.97; unadjusted P=0.04). Combination therapy with fluconazole had no significant effect on survival, as compared with monotherapy (hazard ratio for death by 14 days, 0.78; 95% CI, 0.44 to 1.41; P=0.42; hazard ratio for death by 70 days, 0.71; 95% CI, 0.45 to 1.11; P=0.13). Amphotericin B plus flucytosine was associated with significantly increased rates of yeast clearance from cerebrospinal fluid (−0.42 log10 colony-forming units [CFU] per milliliter per day vs. −0.31 and −0.32 log10 CFU per milliliter per day in groups 1 and 3, respectively; P<0.001 for both comparisons). Rates of adverse events were similar in all groups, although neutropenia was more frequent in patients receiving a combination therapy. Conclusions Amphotericin B plus flucytosine, as compared with amphotericin B alone, is associated with improved survival among patients with cryptococcal meningitis. A survival benefit of amphotericin B plus fluconazole was not found

    Targeting vaccinations for the licensed dengue vaccine: considerations for serosurvey design

    Get PDF
    Background The CYD-TDV vaccine was unusual in that the recommended target population for vaccination was originally defined not only by age, but also by transmission setting as defined by seroprevalence. WHO originally recommended countries consider vaccination against dengue with CYD-TDV vaccine in geographic settings only where prior infection with any dengue serotype, as measured by seroprevalence, was >170% in the target age group. Vaccine was not recommended in settings where seroprevalence was <50%. Test-and-vaccinate strategies suggested following new analysis by Sanofi will still require age-stratified seroprevalence surveys to optimise age-group targeting. Here we address considerations for serosurvey design in the context of vaccination program planning. Methods To explore how the design of seroprevalence surveys affects estimates of transmission intensity, 100 age-specific seroprevalence surveys were simulated using a beta-binomial distribution and a simple catalytic model for different combinations of age-range, survey size, transmission setting, and test sensitivity/specificity. We then used a Metropolis-Hastings Markov Chain Monte-Carlo algorithm to estimate the force of infection from each simulated dataset. Results Sampling from a wide age-range led to more accurate estimates than merely increasing sample size in a narrow age-range. This finding was consistent across all transmission settings. The optimum test sensitivity and specificity given an imperfect test differed by setting with high sensitivity being important in high transmission settings and high specificity important in low transmission settings. Conclusions When assessing vaccination suitability by seroprevalence surveys, countries should ensure an appropriate age-range is sampled, considering epidemiological evidence about the local burden of disease

    A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing—Part I: Fundamentals and Enabling Technologies

    Get PDF
    Social distancing plays a pivotal role in preventing the spread of viral diseases illnesses such as COVID-19. By minimizing the close physical contact among people, we can reduce the chances of catching the virus and spreading it across the community. This two-part paper aims to provide a comprehensive survey on how emerging technologies, e.g., wireless and networking, artificial intelligence (AI) can enable, encourage, and even enforce social distancing practice. In this Part I, we provide a comprehensive background of social distancing including basic concepts, measurements, models, and propose various practical social distancing scenarios. We then discuss enabling wireless technologies which are especially effect- in social distancing, e.g., symptom prediction, detection and monitoring quarantined people, and contact tracing. The companion paper Part II surveys other emerging and related technologies, such as machine learning, computer vision, thermal, ultrasound, etc., and discusses open issues and challenges (e.g., privacy-preserving, scheduling, and incentive mechanisms) in implementing social distancing in practice

    A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing—Part II: Emerging Technologies and Open Issues

    Get PDF
    This two-part paper aims to provide a comprehensive survey on how emerging technologies, e.g., wireless and networking, artificial intelligence (AI) can enable, encourage, and even enforce social distancing practice. In Part I, an extensive background of social distancing is provided, and enabling wireless technologies are thoroughly surveyed. In this Part II, emerging technologies such as machine learning, computer vision, thermal, ultrasound, etc., are introduced. These technologies open many new solutions and directions to deal with problems in social distancing, e.g., symptom prediction, detection and monitoring quarantined people, and contact tracing. Finally, we discuss open issues and challenges (e.g., privacy-preserving, scheduling, and incentive mechanisms) in implementing social distancing in practice. As an example, instead of reacting with ad-hoc responses to COVID-19-like pandemics in the future, smart infrastructures (e.g., next-generation wireless systems like 6G, smart home/building, smart city, intelligent transportation systems) should incorporate a pandemic mode in their standard architectures/designs
    • …
    corecore