7,651 research outputs found

    Clinicians' perspectives on the duty of candour: Implications for medical ethics education

    Get PDF
    © The Author(s) 2017. Content: Truth-telling is an integral part of medical practice in many parts of the world. However, recent public inquiries, including the Francis Inquiry reveal that a duty of candour in practise, are at times compromised. Consequently, the duty of candour became a statutory requirement in England. This study aimed to explore clinicians’ perspectives of the implications of the legislation for medical ethics education, as raising standards to improve patient safety remains an international concern. Methods: One-to-one interviews with clinical educators from various specialties who contribute to the MBChB programme at the authors’ university. Once data saturation had been assessed, transcripts were analysed using a thematic approach by the following concurrent activities: data reduction and coding into themes. Example quotations are used to illustrate that key themes are grounded in the data. Results: Eleven clinical educators were interviewed; three general practitioners, six physicians and two surgeons. Thematic analysis identified three key themes; reaction to legislation, barriers to implementation and areas of the medical curriculum that can be further developed to better prepare future doctors. Conclusions: Currently, the legislation is not reaching all frontline staff; there remains a lack of appropriate training and teaching on the legislation that responds to the perceived challenges to implementing candour. These challenges include tensions in the clinical workplace and concerns about the patient’s best interests conflicting with requirements of the legislation. Both undergraduate and postgraduate curricula need to integrate teaching on the implications of the legislation and take a practice based approach in doing so

    Effective Lagrangian approach to nuclear mu-e conversion and the role of vector mesons

    Full text link
    We study nuclear mu-e conversion in the general framework of an effective Lagrangian approach without referring to any specific realization of the physics beyond the standard model (SM) responsible for lepton flavor violation (LFV). We examine the impact of a specific hadronization prescription on the analysis of new physics in nuclear mu-e conversion and stress the importance of vector meson exchange between lepton and nucleon currents. A new issue of this mechanism is the presence of the strange quark vector current contribution induced by the phi meson. This allows us to extract new limits on the LFV lepton-quark effective couplings from the existing experimental data.Comment: 19 pages, 3 figures, to be published in Phys Rev

    Structural and magnetic properties of [\lbrackErTb]\rbrackmultilayers

    Get PDF
    Abstract.: We have investigated the structural and magnetic properties of [\lbrack Er|Tb ]\rbrack multilayers by different scattering methods. Diffuse X-ray scattering under grazing incidence reveals the interface structure in [\lbrack Er|Tb ]\rbrack bilayers and trilayers, indicating vertically correlated roughness between the Er and Tb interfaces. The magnetic properties of [\lbrack ErnEr|TbnTb ]\rbrack superlattices have been studied as a function of the superlattice composition (indices denote the number of atomic layers). Coupled ferromagnetic structures exist in all investigated samples. The phase transition temperature varies with the Tb layer thickness. Modulated magnetic order is short range for all samples beside the [\lbrack Er20|Tb5 ]\rbrack superlattice, the sample with the smallest Tb layer thickness. We observe dipolar antiferromagnetic coupling between single ferromagnetic Tb layers in all samples, with the onset of this ordering depending on the Tb layer thickness. Due to competing interactions, exchange coupling is limited to the interface near region. Therefore long range modulated magnetic order is observed in the [\lbrack Er20|Tb5 ]\rbrack superlattice only, where the interface regions overlap. The distinct differences to the magnetic structure of an Er0.8Tb0.2 alloy film are explained by a highly anisotropic arrangement of neighbouring atoms due to the correlated roughnes

    Bath generated work extraction and inversion-free gain in two-level systems

    Full text link
    The spin-boson model, often used in NMR and ESR physics, quantum optics and spintronics, is considered in a solvable limit to model a spin one-half particle interacting with a bosonic thermal bath. By applying external pulses to a non-equilibrium initial state of the spin, work can be extracted from the thermalized bath. It occurs on the timescale \T_2 inherent to transversal (`quantum') fluctuations. The work (partly) arises from heat given off by the surrounding bath, while the spin entropy remains constant during a pulse. This presents a violation of the Clausius inequality and the Thomson formulation of the second law (cycles cost work) for the two-level system. Starting from a fully disordered state, coherence can be induced by employing the bath. Due to this, a gain from a positive-temperature (inversion-free) two-level system is shown to be possible.Comment: 4 pages revte

    Mode structure and photon number correlations in squeezed quantum pulses

    Get PDF
    The question of efficient multimode description of optical pulses is studied. We show that a relatively very small number of nonmonochromatic modes can be sufficient for a complete quantum description of pulses with Gaussian quadrature statistics. For example, a three-mode description was enough to reproduce the experimental data of photon number correlations in optical solitons [S. Spalter et al., Phys. Rev. Lett. 81, 786 (1998)]. This approach is very useful for a detailed understanding of squeezing properties of soliton pulses with the main potential for quantum communication with continuous variables. We show how homodyne detection and/or measurements of photon number correlations can be used to determine the quantum state of the multi-mode field. We also discuss a possible way of physical separation of the nonmonochromatic modes.Comment: 14 pages, 4 figures; minor revisions of the text, new references; to appear in the Phys. Rev.

    Van der Waals bond lengths and electronic spectral shifts of the benzene---Kr and benzene---Xe complexes

    Get PDF
    Rotationally resolved UV-spectra are presented for the 610 bands of benzene---Kr and benzene---Xe complexes yielding precise rotational constants and van der Waals bond lengths for the ground and excited vibronic state, and electronic band shifts. These value complement the previously published data for the other rare gases and the various quantities have now been determined for all the benzene—rare gas complexes. Measured values of the bond length were used to calculate the band shifts from recent theoretical predictions. They are compared with the experimental values of this work

    Quantum state engineering on an optical transition and decoherence in a Paul trap

    Get PDF
    A single Ca+ ion in a Paul trap has been cooled to the ground state of vibration with up to 99.9% probability. Starting from this Fock state |n=0> we have demonstrated coherent quantum state manipulation on an optical transition. Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar number of Rabi oscillations after preparation of the ion in the |n=1> Fock state. The coherence of optical state manipulation is only limited by laser and ambient magnetic field fluctuations. Motional heating has been measured to be as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure

    Scaling Laws and Transient Times in 3He Induced Nuclear Fission

    Full text link
    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. The fact that no deviations from the transition state method have been observed within the experimentally investigated excitation energy regime allows one to assign an upper limit for the transient time of 10 zs.Comment: 7 pages, TeX type, psfig, submitted to Phys. Rev. C, also available at http://csa5.lbl.gov/moretto/ps/he3_paper.p

    First experimental proof for aberration correction in XPEEM: Resolution, transmission enhancement, and limitation by space charge effects

    Get PDF
    a b s t r a c t The positive effect of double aberration correction in x-ray induced Photoelectron Emission Microscopy (XPEEM) has been successfully demonstrated for both, the lateral resolution and the transmission, using the Au 4f XPS peak for element specific imaging at a kinetic energy of 113 eV. The lateral resolution is improved by a factor of four, compared to a non-corrected system, whereas the transmission is enhanced by a factor of 5 at a moderate resolution of 80 nm. With an optimized system setting, a lateral resolution of 18 nm could be achieved, which is up to now the best value reported for energy filtered XPEEM imaging. However, the absolute resolution does not yet reach the theoretical limit of 2 nm, which is due to space charge limitation. This occurs along the entire optical axis up to the contrast aperture. In XPEEM the pulsed time structure of the exciting soft x-ray light source causes a short and highly intense electron pulse, which results in an image blurring. In contrast, the imaging with elastically reflected electrons in the low energy electron microscopy (LEEM) mode yields a resolution clearly below 5 nm. Technical solutions to reduce the space charge effect in an aberration-corrected spectro-microscope are discussed
    • …
    corecore