12 research outputs found
Microbubble-assisted ultrasound for imaging and therapy of melanoma skin cancer: A systematic review
International audienceRecent technological developments in ultrasound (US) imaging and ultrasound contrast agents (UCAs) have improved the diagnostic confidence in echography. In the clinical management of melanoma, contrast-enhanced ultrasound (CEUS) imaging complements conventional US imaging (i.e., high-resolution US and Doppler imaging) for clinical examination and therapeutic follow-up. These developments have set into motion the combined use of ultrasound and UCAs as a new modality for drug delivery. This modality, called sonoporation, has emerged as a noninvasive, targeted, and safe method for the delivery of therapeutic drugs into melanoma. This review focuses on the results and prospects of using US and UCAs as dual modalities for CEUS imaging and melanoma treatment
Microbubble-assisted ultrasound for imaging and therapy of melanoma skin cancer: A systematic review
International audienceRecent technological developments in ultrasound (US) imaging and ultrasound contrast agents (UCAs) have improved the diagnostic confidence in echography. In the clinical management of melanoma, contrast-enhanced ultrasound (CEUS) imaging complements conventional US imaging (i.e., high-resolution US and Doppler imaging) for clinical examination and therapeutic follow-up. These developments have set into motion the combined use of ultrasound and UCAs as a new modality for drug delivery. This modality, called sonoporation, has emerged as a noninvasive, targeted, and safe method for the delivery of therapeutic drugs into melanoma. This review focuses on the results and prospects of using US and UCAs as dual modalities for CEUS imaging and melanoma treatment
LIMK2-1 is a Hominidae-Specific Isoform of LIMK2 Expressed in Central Nervous System and Associated with Intellectual Disability
International audienceLIMK2 is involved in neuronal functions by regulating actin dynamics. Different isoforms of LIMK2 are described in databanks. LIMK2a and LIMK2b are the most characterized. A few pieces of evidence suggest that LIMK2 isoforms might not have overlapping functions. In this study, we focused our attention on a less studied human LIMK2 isoform, LIMK2-1. Compared to the other LIMK2 isoforms, LIMK2-1 contains a supplementary C-terminal phosphatase 1 inhibitory domain (PP1i). We found out that this isoform was hominidae-specific and showed that it was expressed in human fetal brain and faintly in adult brain. Its coding sequence was sequenced in 173 patients with sporadic non-syndromic intellectual disability (ID), and we observed an association of a rare missense variant in the PP1i domain (rs151191437, p.S668P) with ID. Our results also suggest an implication of LIMK2-1 in neurite outgrowth and neurons arborization which appears to be affected by the p.S668P variation. Therefore our results suggest that LIMK2-1 plays a role in the developing brain, and that a rare variation of this isoform is a susceptibility factor in ID
Association study of the ubiquitin conjugating enzyme gene UBE2H in sporadic ALS.
International audienceUbiquitin inclusions represent a cytopathological hallmark of ALS. The ubiquitin-dependent protein degradation pathway may also be involved in the pathophysiology of SOD1 mutated ALS cases as demonstrated in transgenic animals. UBE2H is an ubiquitin conjugating enzyme known to act on histones and cytoskeletal proteins, both involved in the degenerative pathway of the motor neuron. We screened the whole coding sequence of the UBE2H gene in 24 sporadic ALS (SALS) patients using single strand conformation polymorphism (SSCP). All variants detected by SSCP were analysed by genomic DNA sequencing. We found one known polymorphism (rs12539800) and two new synonymous single nucleotide polymorphisms (SNP) (nG78A and nG501A). The allele distribution of the rs12539800 (A336G) SNP were tested for association in 252 SALS patients and 357 controls. The allele and genotype distributions were identical in the two groups. The UBE2H gene is not implicated in SALS; however, the ubiquitin pathway is worthy of further investigation in ALS
Mutation screening of the ubiquitin ligase gene RNF135 in French patients with autism
International audienceMany genes are now thought to confer susceptibility to autism. Despite the fact that this neuropsychiatric disease appears to be related to several different causes, common cellular and molecular pathways have emerged and point to synaptic dysfunction or cellular growth. Several studies have indicated the importance of the ubiquitin pathway in synaptic function and the aetiology of autism. Here, we focused on the ring finger protein 135 (RNF135) gene, encoding an E3 ubiquitin ligase expressed in the cortex and cerebellum, and located in the NF1 gene locus in 17q11.2, a region linked to autism. We carried out a genetic analysis of the coding sequence of RFN135 in a French cohort of patients with autism and observed a significantly increased frequency of genotypes carrying the rare allele of the rs111902263 (p.R115K) missense variant in patients (P=0.0019, odds ratio : 4.23, 95% confidence interval : 1.87-9.57). Particularly, three unrelated patients showed a homozygous genotype for K115, a situation not observed in the 1812 control individuals. Further cellular and molecular studies are required to elucidate the role of this gene and the variant K115 in brain development and neuronal function
GRID1/ GluD1 homozygous variants linked to intellectual disability and spastic paraplegia impair mGlu1/5 receptor signaling and excitatory synapses
International audienceAbstract The ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the stiffness of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, we found that both GluD1 mutants hampered signaling of metabotropic glutamate receptor mGlu1/5 via the ERK pathway in neurons of primary cortical culture. Moreover, both mutants impaired dendrite morphology and excitatory synapse density in neurons of primary hippocampal culture. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of the GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system
Novel missense mutations in PTCHD1 alter its plasma membrane subcellular localization and cause intellectual disability and autism spectrum disorder
International audienceThe X-linked PTCHD1 gene, encoding a synaptic membrane protein, has been involved in neurodevelopmental disorders with the description of deleterious genomic microdeletions or truncating coding mutations. Missense variants were also identified, however, without any functional evidence supporting their pathogenicity level. We investigated 13 missense variants of PTCHD1, including eight previously described (c.152G>A,p.(Ser51Asn); c.217C>T,p.(Leu73Phe); c.517A>G,p.(Ile173Val); c.542A>C,p.(Lys181Thr); c.583G>A,p.(Val195Ile); c.1076A>G,p.(His359Arg); c.1409C>A,p.(Ala470Asp); c.1436A>G,p.(Glu479Gly)), and five novel ones (c.95C>T,p.(Pro32Leu); c.95C>G,p.(Pro32Arg); c.638A>G,p.(Tyr213Cys); c.898G>C,p.(Gly300Arg); c.928G>C,p.(Ala310Pro)) identified in male patients with intellectual disability (ID) and/or autism spectrum disorder (ASD). Interestingly, several of these variants involve amino acids localized in structural domains such as transmembrane segments. To evaluate their potentially deleterious impact on PTCHD1 protein function, we performed in vitro overexpression experiments of the wild-type and mutated forms of PTCHD1-GFP in HEK 293T and in Neuro-2a cell lines as well as in mouse hippocampal primary neuronal cultures. We found that six variants impaired the expression level of the PTCHD1 protein, and were retained in the endoplasmic reticulum suggesting abnormal protein folding. Our functional analyses thus provided evidence of the pathogenic impact of missense variants in PTCHD1, which reinforces the involvement of the PTCHD1 gene in ID and in ASD
GRID1/GluD1 homozygous variants linked to intellectual disability and spastic paraplegia impair mGlu1/5 receptor signaling and excitatory synapses
International audienceThe ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling and electrophysiological recordings indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the function of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, upon expression in neurons of dissociated or organotypic slice cultures, we found that both GluD1 mutants hampered metabotropic glutamate receptor mGlu1/5 signaling via Ca 2+ and the ERK pathway and impaired dendrite morphology and excitatory synapse density. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system.</div
Recommended from our members
Missense variants in DPYSL5 cause a neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities
The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ÎČIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ÎČIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders