43 research outputs found
Phase-Sensitive Vibrational Sum and Difference Frequency-Generation Spectroscopy Enabling Nanometer-Depth Profiling at Interfaces
The unique physical and chemical properties of interfaces are governed by a finite depth that describes the transition from the topmost atomic layer to the properties of the bulk material. Thus, understanding the physical nature of interfaces requires detailed insight into the different structures, chemical compositions, and physical processes that form this interfacial region. Such insight has traditionally been difficult to obtain from experiments, as it requires a combination of structural and chemical sensitivity with spatial depth resolution on the nanometer scale. In this contribution, we present a vibrational spectroscopic approach that can overcome these limitations. By combining phase-sensitive sum and difference frequency-generation (SFG and DFG, respectively) spectroscopy and by selectively determining different nonlinear interaction pathways, we can extract precise depth information and correlate these to specific vibrationally resonant modes of interfacial species. We detail the mathematical framework behind this approach and demonstrate the performance of this technique in two sets of experiments on selected model samples. An analysis of the results shows an almost perfect match between experiment and theory, confirming the practicability of the proposed concept under realistic experimental conditions. Furthermore, in measurements with self-assembled monolayers of different chain lengths, we analyze the spatial accuracy of the technique and find that the precision can even reach the sub-nanometer regime. We also discuss the implications and the information content of such depth-sensitive measurements and show that the concept is very general and goes beyond the analysis of the depth profiles. The presented SFG/DFG technique offers new perspectives for spectroscopic investigations of interfaces in various material systems by providing access to fundamental observables that have so far been inaccessible by experiments. Here, we set the theoretical and experimental basis for such future investigations
Estimating cardiac active tension from wall motionâAn inverse problem of cardiac biomechanics
The contraction of the human heart is a complex process as a consequence of the interaction of internal and external forces. In current clinical routine, the resulting deformation can be imaged during an entire heart beat. However, the active tension development cannot be measured in vivo but may provide valuable diagnostic information. In this work, we present a novel numerical method for solving an inverse problem of cardiac biomechanicsâestimating the dynamic active tension field, provided the motion of the myocardial wall is known. This illâposed nonâlinear problem is solved using second order Tikhonov regularization in space and time. We conducted a sensitivity analysis by varying the fiber orientation in the range of measurement accuracy. To achieve RMSE 0.95). The results obtained with nonâmatching input data are promising and indicate directions for further improvement of the method. In future, this method will be extended to estimate the active tension field based on motion data from clinical images, which could provide important insights in terms of a new diagnostic tool for the identification and treatment of diseased heart tissue
The polarization observables T, P, and H and their impact on multipoles
Data on the polarization observables T, P, and H for the reaction are reported. Compared to earlier data from other experiments, our
data are more precise and extend the covered range in energy and angle
substantially. The results were extracted from azimuthal asymmetries measured
using a transversely polarized target and linearly polarized photons. The data
were taken at the Bonn electron stretcher accelerator ELSA with the CBELSA/TAPS
detector. Within the Bonn-Gatchina partial wave analysis, the new polarization
data lead to a significant narrowing of the error band for the multipoles for
neutral-pion photoproduction
The N(1520) 3/2- helicity amplitudes from an energy-independent multipole analysis based on new polarization data on photoproduction of neutral pions
New data on the polarization observables T, P, and H for the reaction are reported. The results are extracted from azimuthal
asymmetries when a transversely polarized butanol target and a linearly
polarized photon beam are used. The data were taken at the Bonn electron
stretcher accelerator ELSA using the CBELSA/TAPS detector. These and earlier
data are used to perform a truncated energy-independent partial wave analysis
in sliced-energy bins. This energy-independent analysis is compared to the
results from energy-dependent partial wave analyses