43 research outputs found

    Phase-Sensitive Vibrational Sum and Difference Frequency-Generation Spectroscopy Enabling Nanometer-Depth Profiling at Interfaces

    Get PDF
    The unique physical and chemical properties of interfaces are governed by a finite depth that describes the transition from the topmost atomic layer to the properties of the bulk material. Thus, understanding the physical nature of interfaces requires detailed insight into the different structures, chemical compositions, and physical processes that form this interfacial region. Such insight has traditionally been difficult to obtain from experiments, as it requires a combination of structural and chemical sensitivity with spatial depth resolution on the nanometer scale. In this contribution, we present a vibrational spectroscopic approach that can overcome these limitations. By combining phase-sensitive sum and difference frequency-generation (SFG and DFG, respectively) spectroscopy and by selectively determining different nonlinear interaction pathways, we can extract precise depth information and correlate these to specific vibrationally resonant modes of interfacial species. We detail the mathematical framework behind this approach and demonstrate the performance of this technique in two sets of experiments on selected model samples. An analysis of the results shows an almost perfect match between experiment and theory, confirming the practicability of the proposed concept under realistic experimental conditions. Furthermore, in measurements with self-assembled monolayers of different chain lengths, we analyze the spatial accuracy of the technique and find that the precision can even reach the sub-nanometer regime. We also discuss the implications and the information content of such depth-sensitive measurements and show that the concept is very general and goes beyond the analysis of the depth profiles. The presented SFG/DFG technique offers new perspectives for spectroscopic investigations of interfaces in various material systems by providing access to fundamental observables that have so far been inaccessible by experiments. Here, we set the theoretical and experimental basis for such future investigations

    Estimating cardiac active tension from wall motion—An inverse problem of cardiac biomechanics

    Get PDF
    The contraction of the human heart is a complex process as a consequence of the interaction of internal and external forces. In current clinical routine, the resulting deformation can be imaged during an entire heart beat. However, the active tension development cannot be measured in vivo but may provide valuable diagnostic information. In this work, we present a novel numerical method for solving an inverse problem of cardiac biomechanics—estimating the dynamic active tension field, provided the motion of the myocardial wall is known. This ill‐posed non‐linear problem is solved using second order Tikhonov regularization in space and time. We conducted a sensitivity analysis by varying the fiber orientation in the range of measurement accuracy. To achieve RMSE 0.95). The results obtained with non‐matching input data are promising and indicate directions for further improvement of the method. In future, this method will be extended to estimate the active tension field based on motion data from clinical images, which could provide important insights in terms of a new diagnostic tool for the identification and treatment of diseased heart tissue

    The polarization observables T, P, and H and their impact on Îłp→pπ0\gamma p \to p\pi^0 multipoles

    Full text link
    Data on the polarization observables T, P, and H for the reaction Îłp→pπ0\gamma p\to p\pi^0 are reported. Compared to earlier data from other experiments, our data are more precise and extend the covered range in energy and angle substantially. The results were extracted from azimuthal asymmetries measured using a transversely polarized target and linearly polarized photons. The data were taken at the Bonn electron stretcher accelerator ELSA with the CBELSA/TAPS detector. Within the Bonn-Gatchina partial wave analysis, the new polarization data lead to a significant narrowing of the error band for the multipoles for neutral-pion photoproduction

    The N(1520) 3/2- helicity amplitudes from an energy-independent multipole analysis based on new polarization data on photoproduction of neutral pions

    Full text link
    New data on the polarization observables T, P, and H for the reaction Îłp→pπ0\gamma p \to p\pi^0 are reported. The results are extracted from azimuthal asymmetries when a transversely polarized butanol target and a linearly polarized photon beam are used. The data were taken at the Bonn electron stretcher accelerator ELSA using the CBELSA/TAPS detector. These and earlier data are used to perform a truncated energy-independent partial wave analysis in sliced-energy bins. This energy-independent analysis is compared to the results from energy-dependent partial wave analyses
    corecore