58 research outputs found

    Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment

    Get PDF
    Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem-scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m-deep in a peat bog over a 7-year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7-year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass-balance model revealed increases in peat-supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland-climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source. Plain Language Summary Since the end of the last glacial period, about 20 thousand years ago, peatlands have taken up carbon and now store an amount nearly equivalent to the quantity in the atmosphere. Microorganisms consume and respire that peat C releasing it back to the atmosphere as CO2 and CH4. Until now, many studies have shown that microorganisms prefer to consume the most recently fixed carbon and that the deeply buried ancient peat carbon reservoir is relatively stable. However, climate warming is expected to upset that balance. The Spruce and Peatlands Responses Under Changing Environments is large-scale experimental warming of a Minnesota peatland designed to study these effects. We conducted radiocarbon analysis of the peat and the microbially produced CO2 and dissolved organic carbon in ambient and heated areas of the peatland and show that at warmer temperatures more of the ancient peat carbon is being mobilized and respired to CO2. This is troubling as it signifies a positive feedback loop wherein warming stimulates peat to produce more CO2 which further exacerbates climate change

    Soil Metabolome Response to Whole-Ecosystem Warming at the Spruce and Peatland Responses Under Changing Environments Experiment

    Get PDF
    While peatlands have historically stored massive amounts of soil carbon, warming is expected to enhance decomposition, leading to a positive feedback with climate change. In this study, a unique whole-ecosystem warming experiment was conducted in northern Minnesota to warm peat profiles to 2 m deep while keeping water flow intact. After nearly 2 y, warming enhanced the degradation of soil organic matter and increased greenhouse gas production. Changes in organic matter quality with warming were accompanied by a stimulation of methane production relative to carbon dioxide. Our results revealed increased decomposition to be fueled by the availability of reactive carbon substrates produced by surface vegetation. The elevated rates of methanogenesis are likely to persist and exacerbate climate warming

    Ecosystem fluxes during drought and recovery in an experimental forest

    No full text

    Root Metabolic Responses to Drought Drive Plant-Microbe Interactions in the Rhizosphere

    No full text
    t the interface of plant-soil-microbe interactions lies the rhizosphere, a narrow zone surrounding roots rich in metabolic activity and nutrient cycling. As climate warming and its accompanying water scarcity increases in both frequency and duration, it is unknown how plant-mediated processes such as root exudation will alter and influence soil organic matter composition in the rhizosphere. Here we integrated 16S rRNA gene amplicon sequencing for microbial community analysis, high-resolution organic matter measurements for meta-metabolome characterization, and position-specific 13C-pyruvate labeling to track carbon allocation pathways to fully characterize how microbes and species-specific plant roots influence rhizosphere soil organic carbon turnover. In situ metabolic and microbial rhizosphere profiles of three plant species, Piper auritum, Hibiscus rosa sinensis, and Clitoria fairchildiana revealed drastically different drought-response mechanisms, enhancing our understanding of niche rhizosphere dynamics. Overall, drought conditions intensified the exclusion of phylogenetically distant microbes, sufficiently conserved microbial functional traits, and decreased microbial heterogeneity across roots of all plant species. Yet, individual host rhizosphere profiles responded differently; P. auritum decreased root exudation into the rhizosphere indicating a decreased dependence on surrounding microbes. Meanwhile, H. rosa sinensis and C. fairchildiana responded aptly to water stress through modulating their exudate metabolic composition and, therefore, rhizosphere microbial communities. Our results revealed how plant species-specific microbial interactions systematically progressed with the root metabolome; as roots responded to drought, their associated microbial communities adapted, potentially supplementing drought tolerance strategies for plant roots. These findings have significant implications for maintaining plant health during drought stress and improving plant performance for climate change mitigation in both natural systems and agriculture

    Shifts In Pore Connectivity From Precipitation Versus Groundwater Rewetting Increases Soil Carbon Loss After Drought

    No full text
    Droughts and other extreme precipitation events are predicted to increase in intensity, duration, and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-scale, core-scale, and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soil moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion
    • …
    corecore