54 research outputs found

    Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes

    Get PDF
    Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES) on neonatal DNA derived from pregnancies complicated by PPROM (49 cases) and healthy term deliveries (20 controls) to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225) of damaging/potentially damaging rare variants was identified in the genes of interest—fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans

    Ensure Everyone Succeeds

    Get PDF
    Students in the post-baccalaureate certificate and graduate programs on the Health Science Campus (MS, PhD, and first professional programs including DDS, PharmD, and MD) are highly motivated to succeed in their chosen career paths. Needless to say, these courses are very heavy on didactics and challenge the best of the students. Typically, these programs have rigid curricular designs and offer little to no flexibility to students in choosing the courses. It is fast-paced, high in curricular hours and the students cannot afford to have mishaps without jeopardizing their careers. While this stringent curriculum is necessary for VCU to maintain its accreditation standards and global standing, it does take a toll on students’ performance and well-being. The Division of Academic Success (DAS) on the Health Science campus provides an excellent support net for these students in terms of identifying and supporting students needing accommodations, teaching time management and study habits, and test taking strategies. Conversations among team members, students and program directors representing different units in the Health Science Campus, as well as discussions with DAS staff, revealed lack of awareness of the comprehensive services provided by the DAS and no standard policy/ guideline across different schools as to when to engage the DAS to help students in need. To improve utilization, this project proposes that DAS focus on three key areas: education and training, promotion and marketing, and redesign and elevation of existing resources

    TSSK3, a novel target for male contraception, is required for spermiogenesis

    Get PDF
    We have previously shown that members of the family of testis-specific serine/threonine kinases (TSSKs) are post-meiotically expressed in testicular germ cells and in mature sperm in mammals. The restricted post-meiotic expression of TSSKs as well as the importance of phosphorylation in signaling processes strongly suggest that TSSKs have an important role in germ cell differentiation and/or sperm function. This prediction has been supported by the reported sterile phenotype of the TSSK6 knock-out (KO) mice and of the double TSSK1/TSSK2 KO. The aim of this study was to develop KO mouse models of TSSK3 and to validate this kinase as a target for the development of a male contraceptive. We used CRISPR/Cas9 technology to generate the TSSK3 KO allele on B6D2F1 background mice. Male heterozygous pups were used to establish three independent TSSK3 KO lines. After natural mating of TSSK3 KO males, females that presented a plug (indicative of mating) were monitored for the following 24 days and no pregnancies or pups were found. Sperm numbers were drastically reduced in all three KO lines and, remarkably, round spermatids were detected in the cauda epididymis of KO mice. From the small population of sperm recovered, severe morphology defects were detected. Our results indicate an essential role of TSSK3 in spermiogenesis and support this kinase as a suitable candidate for the development of novel nonhormonal male contraceptives.Fil: Nayyab, Saman. University of Massachussets; Estados UnidosFil: Gervasi, María G.. University of Massachussets; Estados UnidosFil: Tourzani, Darya A.. University of Massachussets; Estados UnidosFil: Caraballo, Diego Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Jha, Kula N.. No especifíca;Fil: Teves, Maria E.. University of Virginia; Estados UnidosFil: Cui, Wei. University of Massachussets; Estados UnidosFil: Georg, Gunda I.. University of Minnesota; Estados UnidosFil: Visconti, Pablo E.. University of Massachussets; Estados UnidosFil: Salicioni, Ana M.. University of Massachussets; Estados Unido

    Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice

    Get PDF
    Intraflagellar transport (IFT) is a conserved mechanism thought to be essential for the assembly and maintenance of cilia and flagella. However, little is known about its role in mammalian sperm flagella formation. To fill this gap, we disrupted the Ift20 gene in male germ cells. Homozygous mutant mice were infertile with significantly reduced sperm counts and motility. In addition, abnormally shaped elongating spermatid heads and bulbous round spermatids were found in the lumen of the seminiferous tubules. Electron microscopy revealed increased cytoplasmic vesicles, fiber-like structures, abnormal accumulation of mitochondria and a decrease in mature lysosomes. The few developed sperm had disrupted axonemes and some retained cytoplasmic lobe components on the flagella. ODF2 and SPAG16L, two sperm flagella proteins failed to be incorporated into sperm tails of the mutant mice, and in the germ cells, both were assembled into complexes with lighter density in the absence of IFT20. Disrupting IFT20 did not significantly change expression levels of IFT88, a component of IFT-B complex, and IFT140, a component of IFT-A complex. Even though the expression level of an autophagy core protein that associates with IFT20, ATG16, was reduced in the testis of the Ift20 mutant mice, expression levels of other major autophagy markers, including LC3 and ubiquitin were not changed. Our studies suggest that IFT20 is essential for male fertility and spermiogenesis in mice, and its major function is to transport cargo proteins for sperm flagella formation. It also appears to be involved in removing excess cytoplasmic components

    Dissecting the structural basis of MEIG1 interaction with PACRG

    Get PDF
    The product of the meiosis-expressed gene 1 (MEIG1) is found in the cell bodies of spermatocytes and recruited to the manchette, a structure unique to elongating spermatids, by Parkin co-regulated gene (PACRG). This complex is essential for targeting cargo to the manchette during sperm flagellum assembly. Here we show that MEIG1 adopts a unique fold that provides a large surface for interacting with other proteins. We mutated 12 exposed and conserved amino acids and show that four of these mutations (W50A, K57E, F66A, Y68A) dramatically reduce binding to PACRG. These four amino acids form a contiguous hydrophobic patch on one end of the protein. Furthermore, each of these four mutations diminishes the ability of MEIG1 to stabilize PACRG when expressed in bacteria. Together these studies establish the unique structure and key interaction surface of MEIG1 and provide a framework to explore how MEIG1 recruits proteins to build the sperm tail

    Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM)

    Full text link
    BackgroundTwin studies have revealed a significant contribution of the fetal genome to risk of preterm birth. Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm delivery. Infection and inflammation of the fetal membranes is commonly found associated with PPROM.MethodsWe carried out whole exome sequencing (WES) of genomic DNA from neonates born of Africanñ American mothers whose pregnancies were complicated by PPROM (76) or were normal term pregnancies (N = 43) to identify mutations in 35 candidate genes involved in innate immunity and host defenses against microbes. Targeted genotyping of mutations in the candidates discovered by WES was conducted on an additional 188 PPROM cases and 175 controls.ResultsWe identified rare heterozygous nonsense and frameshift mutations in several of the candidate genes, including CARD6, CARD8, DEFB1, FUT2, MBL2, NLP10, NLRP12, and NOD2. We discovered that some mutations (CARD6, DEFB1, FUT2, MBL2, NLRP10, NOD2) were present only in PPROM cases.ConclusionsWe conclude that rare damaging mutations in innate immunity and host defense genes, the majority being heterozygous, are more frequent in neonates born of pregnancies complicated by PPROM. These findings suggest that the risk of preterm birth in Africanñ Americans may be conferred by mutations in multiple genes encoding proteins involved in dampening the innate immune response or protecting the host against microbial infection and microbial products.Rare damaging mutations in fetal innate immunity and host defense genes, the majority being heterozygous, are more frequent in neonates born of pregnancies complicated by preterm premature rupture of membranes. An increased risk of preterm birth may be conferred by mutations in multiple genes encoding proteins involved in dampening the innate immune response or protecting the host against microbial infection and microbial products.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140041/1/mgg3330.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/140041/2/mgg3330_am.pd

    Reduced SPAG17 Expression in Systemic Sclerosis Triggers Myofibroblast Transition and Drives Fibrosis

    Get PDF
    Systemic sclerosis (SSc) is a clinically heterogeneous fibrotic disease with no effective treatment. Myofibroblasts are responsible for unresolving synchronous skin and internal organ fibrosis in SSc, but the drivers of sustained myofibroblast activation remain poorly understood. Using unbiased transcriptome analysis of skin biopsies, we identified the downregulation of SPAG17 in multiple independent cohorts of patients with SSc, and by orthogonal approaches, we observed a significant negative correlation between SPAG17 and fibrotic gene expression. Fibroblasts and endothelial cells explanted from SSc skin biopsies showed reduced chromatin accessibility at the SPAG17 locus. Remarkably, mice lacking Spag17 showed spontaneous skin fibrosis with increased dermal thickness, collagen deposition and stiffness, and altered collagen fiber alignment. Knockdown of SPAG17 in human and mouse fibroblasts and microvascular endothelial cells was accompanied by spontaneous myofibroblast transformation and markedly heightened sensitivity to profibrotic stimuli. These responses were accompanied by constitutive TGF-ÎČ pathway activation. Thus, we discovered impaired expression of SPAG17 in SSc and identified, to our knowledge, a previously unreported cell-intrinsic role for SPAG17 in the negative regulation of fibrotic responses. These findings shed fresh light on the pathogenesis of SSc and may inform the search for innovative therapies for SSc and other fibrotic conditions through SPAG17 signaling

    A MEIG1/PACRG complex in the manchette is essential for building the sperm flagella

    Get PDF
    A key event in the process of spermiogenesis is the formation of the flagella, which enables sperm to reach eggs for fertilization. Yeast two-hybrid studies revealed that meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) interact, and that sperm-associated antigen 16, which encodes an axoneme central apparatus protein, is also a binding partner of MEIG1. In spermatocytes of wild-type mice, MEIG1 is expressed in the whole germ cell bodies, but the protein migrates to the manchette, a unique structure at the base of elongating spermatid that directs formation of the flagella. In the elongating spermatids of wild-type mice, PACRG colocalizes with α-tubulin, a marker for the manchette, whereas this localization was not changed in the few remaining elongating spermatids of Meig1-deficient mice. In addition, MEIG1 no longer localizes to the manchette in the remaining elongating spermatids of Pacrg-deficient mice, indicating that PACRG recruits MEIG1 to the manchette. PACRG is not stable in mammalian cells, but can be stabilized by MEIG1 or by inhibition of proteasome function. SPAG16L is present in the spermatocyte cytoplasm of wild-type mice, and in the manchette of elongating spermatids, but in the Meig1 or Pacrg-deficient mice, SPAG16L no longer localizes to the manchette. By contrast, MEIG1 and PACRG are still present in the manchette of Spag16L-deficient mice, indicating that SPAG16L is a downstream partner of these two proteins. Together, our studies demonstrate that MEIG1/PACRG forms a complex in the manchette and that this complex is necessary to transport cargos, such as SPAG16L, to build the sperm flagella

    Sperm-Associated Antigen 6 (SPAG6) Deficiency and Defects in Ciliogenesis and Cilia Function: Polarity, Density, and Beat

    Get PDF
    SPAG6, an axoneme central apparatus protein, is essential for function of ependymal cell cilia and sperm flagella. A significant number of Spag6-deficient mice die with hydrocephalus, and surviving males are sterile because of sperm motility defects. In further exploring the ciliary dysfunction in Spag6-null mice, we discovered that cilia beat frequency was significantly reduced in tracheal epithelial cells, and that the beat was not synchronized. There was also a significant reduction in cilia density in both brain ependymal and trachea epithelial cells, and cilia arrays were disorganized. The orientation of basal feet, which determines the direction of axoneme orientation, was apparently random in Spag6-deficient mice, and there were reduced numbers of basal feet, consistent with reduced cilia density. The polarized epithelial cell morphology and distribution of intracellular mucin, α-tubulin, and the planar cell polarity protein, Vangl2, were lost in Spag6-deficient tracheal epithelial cells. Polarized epithelial cell morphology and polarized distribution of α-tubulin in tracheal epithelial cells was observed in one-week old wild-type mice, but not in the Spag6-deficient mice of the same age. Thus, the cilia and polarity defects appear prior to 7 days post-partum. These findings suggest that SPAG6 not only regulates cilia/flagellar motility, but that in its absence, ciliogenesis, axoneme orientation, and tracheal epithelial cell polarity are altered

    Sperm Associated Antigen 6 (SPAG6) Regulates Fibroblast Cell Growth, Morphology, Migration and Ciliogenesis

    Get PDF
    Mammalian Spag6 is the orthologue of Chlamydomonas PF16, which encodes a protein localized in the axoneme central apparatus, and regulates flagella/cilia motility. Most Spag6-deficient mice are smaller in size than their littermates. Because SPAG6 decorates microtubules, we hypothesized that SPAG6 has other roles related to microtubule function besides regulating flagellar/cilia motility. Mouse embryonic fibroblasts (MEFs) were isolated from Spag6-deficient and wild-type embryos for these studies. Both primary and immortalizedSpag6-deficient MEFs proliferated at a much slower rate than the wild-type MEFs, and they had a larger surface area. Re-expression of SPAG6 in the Spag6-deficient MEFs rescued the abnormal cell morphology. Spag6-deficient MEFs were less motile than wild-type MEFs, as shown by both chemotactic analysis and wound-healing assays. Spag6-deficient MEFs also showed reduced adhesion associated with a non-polarized F-actin distribution. Multiple centrosomes were observed in theSpag6-deficient MEF cultures. The percentage of cells with primary cilia was significantly reduced compared to the wild-type MEFs, and some Spag6-deficient MEFs developed multiple cilia. Furthermore, SPAG6 selectively increased expression of acetylated tubulin, a microtubule stability marker. The Spag6-deficient MEFs were more sensitive to paclitaxel, a microtubule stabilizer. Our studies reveal new roles for SPAG6 in modulation of cell morphology, proliferation, migration, and ciliogenesis
    • 

    corecore