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Abstract

SPAG6, an axoneme central apparatus protein, is essential for function of ependymal cell cilia and sperm flagella. A
significant number of Spag6-deficient mice die with hydrocephalus, and surviving males are sterile because of sperm
motility defects. In further exploring the ciliary dysfunction in Spag6-null mice, we discovered that cilia beat frequency was
significantly reduced in tracheal epithelial cells, and that the beat was not synchronized. There was also a significant
reduction in cilia density in both brain ependymal and trachea epithelial cells, and cilia arrays were disorganized. The
orientation of basal feet, which determines the direction of axoneme orientation, was apparently random in Spag6-deficient
mice, and there were reduced numbers of basal feet, consistent with reduced cilia density. The polarized epithelial cell
morphology and distribution of intracellular mucin, a-tubulin, and the planar cell polarity protein, Vangl2, were lost in
Spag6-deficient tracheal epithelial cells. Polarized epithelial cell morphology and polarized distribution of a-tubulin in
tracheal epithelial cells was observed in one-week old wild-type mice, but not in the Spag6-deficient mice of the same age.
Thus, the cilia and polarity defects appear prior to 7 days post-partum. These findings suggest that SPAG6 not only
regulates cilia/flagellar motility, but that in its absence, ciliogenesis, axoneme orientation, and tracheal epithelial cell polarity
are altered.
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Introduction

Mammalian SPAG6 is the orthologue of PF16, a component of

the central apparatus of the ‘‘9+2’’ axoneme of the green algae

model organism, Chlamydomonas reinhardtii [1]. In Chlamydo-
monas, PF16 protein is present along the length of the flagella, and

immunogold labeling localizes the PF16 protein to a single

microtubule of the central pair. Mutations in the Chlamydomonas
PF16 gene cause flagellar paralysis, and PF16 is believed to be

involved in C1 central microtubule stability and flagellar motility

[2]. In addition to Chlamydomonas reinhardtii, SPAG6/PF16 has

been shown to regulate flagellar motility in other models, including

trypanosomes, Plasmodium, and Giardia [3], [4,5].

Gene targeting has been used to create mice lacking SPAG6 [6].

Approximately 50% of Spag6-deficient animals died from

hydrocephalus before adulthood, and males surviving to maturity

were infertile. Even though an abnormal axoneme ultrastructure

was discovered in the Spag6-deficient sperm [6], cilia of brain

ependymal cells and trachea epithelial cells from the mutant mice

contained ‘‘9+2’’ axonemes that appeared to be grossly intact [7].

However, brain ependymal cells of Spag6-deficient mice are

functionally defective since hydrocephalus develops.

In further characterizing the cilia abnormalities of Spag6-

deficient mice, we discovered that ciliary beat frequency was

significantly reduced. The mutant mice also had fewer trachea and

ependymal cilia, and these cilia were arrayed in a random fashion

on the cell surface. The central pair orientation differed

significantly between cilia of the Spag6-deficient mice, reflecting

the random orientation of basal feet. The polarized epithelial cell

morphology and distribution of a-tubulin and planar cell polarity

protein, Vangl2, were lost in Spag6-deficient tracheal epithelial

cells. These findings suggest that mouse SPAG6 has multiple

functions: it regulates cilia/flagellar motility through the central
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pair apparatus; but also plays a role in ciliogenesis, axoneme

orientation, and cell polarity.

Materials and Methods

Spag6 and Spag16L mutant mice
Spag6 and Spag16L mutant mice were generated previously in

our laboratory [6,8]. All animal work was approved by Virginia

Commonwealth University’s Institutional Animal Care & Use

Committee (protocol #AM10297 and AD10000167) in accor-

dance with Federal and local regulations regarding the use of non-

primate vertebrates in scientific research.

High-speed video analysis of ciliary beat frequency
Ciliary beat frequency was assessed with the Sisson–Ammons

video analysis (SAVA) system (Ammons Engineering, Mt. Morris,

MI) [9]. Tracheas from wild type and Spag6-deficient mice (3

weeks old) were removed and video movies were taken within five

minutes with an Nikon Eclipse TE-2000 inverted microscope (640

phase-contrast objective) equipped with an ES-310 Turbo

monochrome high-speed video camera (Redlake, San Diego,

CA) set at 125 frames per second. The ciliary beat pattern was

evaluated on slow-motion playbacks.

Transmission electron microscopy
For transmission electron microscopy (TEM), the samples (from

3 week old mice) were cut into small sections (262 mm) and fixed

in 2.5%glutaraldehyde (PH = 7. 4) for 6–8 hours at 4uC. They

were washed and post fixed in 2% OsO4 for 1 hour, at 4uC. The

tissue was dehydrated through ascending series of ethanol

concentrations and embedded in araldite CY212. Semi thin

sections (1 mm) were cut and stained with toluidine blue. Ultra-

thin sections (60–70 nm) were cut and stained with uranyl acetate

and alkaline lead citrate.

Scanning electron microscopy
Specimens (from 3 week old mice) were fixed with 1.5%

glutaraldehyde and 1.5% paraformaldehyde in 0.1 M sodium

phosphate buffer, pH 7.3 for 3 hours at room temperature and

postfixed for two hours in 2% osmium tetroxide in 0.1 sodium

phosphate buffer. After dehydration in graded ethanol, samples for

scanning electron microscopy (SEM) were dried in a critical-point

dryer (Polaron, Watford, UK), mounted on stubs, and coated with

gold-palladium in a cool sputter coater (Fisons Instruments

Uckfield, UK). The specimens were examined using a scanning

electron microscope DSM 960 (Zeiss Oberkochen, Germany).

Histology
H&E and Periodic acid-Schiff (PAS) staining on mouse trachea

(from 1 and 3 week old mice) were carried out using standard

procedures. 5 mm sections were cut for experiments.

Immunofluorescence staining of brain and trachea
Brain and trachea from wild-type and Spag6-mutant mice (3

week old) were fixed with 4% paraformaldehyde in 0.1 M PBS

(pH 7.4), and 5 mm paraffin sections were made. For the

immunofluorescence, the method described by Tsuneoka was

used [10]. The sections were incubated with an anti-Vangl2 or

anti-acetylated tubulin primary antibody at 4uC for overnight.

Slides were washed with PBS and incubated for 1 hour at room

temperature with Alexa 488-conjugated anti-mouse IgG second-

ary antibody (1:500; Jackson ImmunoResearch Laboratories) or

Cy3-conjugated anti-rabbit IgG secondary antibody (1:5000;

Jackson ImmunoResearch Laboratories). Following secondary

antibody incubation, the slides were washed again three times in

PBS, mounted using VectaMount with 49, 6-diamidino-2-pheny-

lindole (DAPI) (Vector Laboratories, Burlingame, CA), and sealed

with a cover slip. Images were captured by confocal laser-scanning

microscopy (Leica TCS-SP2 AOBS).

Figure 1. Trachea ciliary beat frequency (CBF) is dramatically decreased in Spag6-mutant mice. Graph showing ciliary beat frequency for
wild-type, Spag6, and Spag16L mutant mice. The mean CBF in Spag6-deficient mice was significantly lower than that in the wild type and Spag16L
mice at both 25uC (n = 13, 7 and 12 for wild-type, Spag6 mutant, and Spag16L mutant mice respectively) and 35uC (n = 5, 7 and 7 for wild-type, Spag6
mutant, and Spag16L mutant mice respectively). *p,0.05. ANOVA was conducted to determine significant difference.
doi:10.1371/journal.pone.0107271.g001
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Video-microscopy
Tracheas were collected from three week old wild-type and

Spag6 knockout mice. Trachea sections were placed luminal side

down on a coverslip containing some blood drops in 37uC PBS.

Cilia movement and blood cells flows were observed with

differential interference contrast microscopy using an inverted

microscope (Nikon) equipped with a 100 X oil immersion

objective. Images were recorded at 30 frames per second with

SANYO color CCD, Hi-resolution camera (VCC-3972, Sanyo

Electric Co, Japan) and Pinnacle Studio HD (Ver. 14.0, Pinnacle

Systems, Inc., Mountain View, CA, USA) software. Several

randomly selected areas were imaged for each sample. Quantifi-

cation of blood cells directionality was performed with ImageJ

software and plugin MTrackJ (NIH). 200 blood cells were tracked

for each sample. Directionality was defined as the net displace-

ment achieved divided by the total distance traveled. A

directionality of 1 indicated the blood cell moved in a straight

line, while a directionality of 0 represents a random movement

approach. Data represent mean 6 SEM of three mice for each

genotype.

Western blot analysis
Equal amounts of protein (50 mg/lane) were heated to 95uC for

10 minutes in sample buffer, loaded onto 10% sodium dodecyl

sulfate-polyacrylamide gels, electrophoretically separated, and

transferred to polyvinylidene difluoride membranes (Millipore,

Billerica, MA). Membranes were blocked (Tris-buffered saline

solution containing 5% nonfat dry milk and 0.05% Tween 20

(TBST)) and then incubated overnight with indicated antibodies at

4uC. After washing in TBST, the blots were incubated with second

antibodies for 1 hour at room temperature. After washing, the

proteins were detected with Super Signal chemiluminescent

substrate (Pierce, Rockford, IL).

Quantitative analysis of basal foot orientation
A reference line was drawn for each image. For each basal foot,

a vector connecting the center of the basal body and the

protrusion of the basal foot was drawn. The angle between this

vector and the reference line was measured manually using ImageJ

software (NIH). Five images were analyzed from each mouse, and

three wild-type and three mutant mice were used for the analysis.

The mean angle was calculated for each cell using Oriana 4.0

software (Kovach Computing Services). The mean angle was

defined as mean ciliary direction (shown as 0u in each circular plot

graph). Deviation from the mean angle was calculated for all of the

basal feet analyzed. Deviation angles of the basal feet were pooled

and plotted on a circular graph using Oriana 4.0 software.

Statistical methods
Significant difference of axoneme number and basal feet

number between wild-type and Spag6-deficient mice was calcu-

lated using student t test. Significant difference of CBF among

wild-type, Spag6, and Spag16L-deficient mice was calculated

using ANOVA. * = significant at 0.05. Statistical analysis of

tracheal epithelial cell basal body rootlet orientation was carried

out with Oriana 4.0 (Kovach Computing Services) circular

statistics software.

Results and Discussion

A recent study reported that the mouse has two copies of the

Spag6 gene, the one previously studied on chromosome 16, which

is proposed to have evolved from the parental isoform, Spag6-
BC061194, which is located on chromosome 2 [11]. Even though

the amino acid sequences of the two SPAG6 proteins are 97%

identical, the nucleotide sequences of the two Spag6 genes are

significantly different. We confirmed that the Spag6-deficient

mouse we created and studied retains the Spag6-BC061194 gene,

so that the phenotypes we have described represent the solely the

impact of the loss of the ‘‘evolved’’ Spag6 gene (data not shown).

Ciliary beat frequency (CBF) of tracheal cilia was measured in

Spag6-deficient and littermate wild-type mice. Compared to the

wild-type mice, baseline CBF was significantly reduced in the

Spag6-deficient mice at both room temperature (25uC) and 35uC
(Fig. 1). Of note, mutation of the Spag16L gene, which encodes a

central apparatus protein, SPAG16L, that interacts with SPAG6,

does not cause CBF abnormalities or uncoordinated cilia beat

[12], despite the fact that Spag16L mutant mice are infertile due

Figure 2. Cilia-generated flow is significantly reduced in Spag6-
deficient tracheal epithelium. A) Longitudinal view of tracheal
epithelia from wild-type mouse showing the tracking of movement of
blood cells. B) Longitudinal view of tracheal epithelia from Spag6
knockout mouse showing the tracking of movement of blood cells. C)
Cilia generated flow was quantified by analyzing the directionality of
movement of blood cells. * Significant differences (p,0.05) vs. wild-
type. Data are presented as mean 6 SEM. The colors indicates
movement track of individual blood cells.
doi:10.1371/journal.pone.0107271.g002
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Figure 3. Analyses of cilia in the trachea epithelial cells and brain ependymal cells by scanning electronic microscopy and
immunofluorescence staining. Representative images from SEM analyses from wild-type and Spag6-deficient mice. Cilia of the wild type mice
were well-organized in both brain ependymal cells (A) and trachea epithelial cells (C). In contrast, there was a dramatic reduction in cilia density in
both brain ependymal cells (B) and trachea epithelial cells (D) of the Spag6-deficient mice, and the cilia were disorganized. To calculate the
percentage of ciliated cells, cells with cilia and total cells were counted from three (brain) or four (trachea) SEM images from each mouse, and ratio
was calculated (E). Three wild-type and three Spag6-deficient mice were analyzed. * Significant differences vs. wild-type (p,0.05). Brain and trachea
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to a severe sperm motility defect [8]. Thus, SPAG6 has functional

roles in tracheal cilia that are distinct from those of SPAG16L.

Tracheal ciliary beating was also observed by video microscopy.

Consistent with the CBF results, cilia from wild-type mice beat at a

faster rate, and the beat was coordinated, with all the cilia beating

in the same direction at a specific time point (Video S1). The

metachronal beating resulted in a directional flow as shown by the

movement of particles/blood cells (Video S2 and Fig. 2A).

However, cilia from Spag6-deficient mice beat at a much slower

rate, and the beating was largely uncoordinated. At specific time

points, some cilia beat in one direction, but others in an opposite

direction (Video S3). Significantly reduced directed flow was

observed as the blood cells collected at the beginning of the

tracheal tubes (Video S4, Fig. 2B and Fig. 2C).

Scanning electron microscopy (SEM) was carried out on three

(3 week old) wild-type and three Spag6-deficient mice of the same

age to examine cilia orientation. Tracheal and ependymal cilia in

the wild-type animals are anchored to the cell surface in organized

arrays (Fig. 3A, 3C). In contrast, cilia arrays of Spag6-deficient

mice were disorganized (Fig. 3B, 3D, Figure S1C and Figure

S1D). In addition, there was a dramatic reduction in cilia density

in both brains and tracheas of the Spag6-deficient mice, and the

percentage of ciliated cells was significantly lower in the mutant

mice (Fig. 3E). Cilia in these tissues were further examined by

immunofluorescence staining using an antibody to acetylated

tubulin. In wild-type mice, the cilia signal was continuous along

the surface of the epithelial cells, and extended away from the cell

surface into the lumen (Fig. 3F, left panel). However, in the

Spag6-deficient mice, the signal was discontinuous, and the signal

extended to a lesser extent from cell surface than in wild-type

tissues (Fig. 3F, right panel).

Transmission electron microscopy (TEM) was conducted to

examine the orientation of the central pair microtubules in four

wild-type and four Spag6-deficient mice. In wild-type animals,

orientation of the two central microtubules of all the cilia in the

ependymal cells (Fig. 4A) and tracheal epithelial cells (Fig. 4C) was

consistent, as shown by the similar orientation of lines connecting

the two microtubules in all the axonemes. In the Spag6-deficient

mice, the axoneme structure appeared normal, but the orientation

of the two central microtubules was random; lines connecting

central microtubules pointed to one direction in some axonemes,

while the lines pointed to a different direction in others (Fig. 4B,

and Fig. 4D). To compare the cilia number in the brain

ependymal and trachea epithelial cells of wild-type and Spag6-

deficient mice, the axoneme number was counted from ten TEM

images randomly selected from each group. The Spag6-deficient

mice had significantly lower axoneme numbers than that in the

wild-type mice (p,0.05, Fig. 4E).

The ciliary beat orientation is determined by the orientation of

the basal feet [13]. The basal feet were examined in the brain

ependymal and trachea epithelial cells of wild-type and the Spag6-

deficient mice by TEM. In the wild-type mice, the basal feet were

present in both brain ependymal cells (Fig. 5A) and trachea

epithelial cells (Fig. 5C), and they were organized in a similar

orientation. However, in the Spag6-deficient mice, even though

basal feet were morphologically intact, the orientation was

random. Like the orientation of the central microtubules in the

Spag6-deficient mice, some basal feet pointed to one direction,

others pointed in different direction (Fig. 5B, and Fig. 5D). The

basal feet number was also counted from the TEM images, and

the number was significantly reduced in both brain ependymal

(p,0.05) and trachea epithelial cells (p,0.05) of the Spag6-

deficient mice (Fig. 5E). To determine if the organization of basal

feet in Spag6-mutant mice is significantly different compared to

wild-type animals, basal foot orientation of tracheal epithelial cells

was analyzed in three Spag6 mutant mice (Figure S2A) and three

wild-type mice (Figure S2B). Statistical analysis demonstrated that

there was significant difference in the rcell metric between the

mutant and wild-type mice (Fig. 5F), suggesting that intracellular

planar polarity was lost in the mutant mice.

To investigate tissue-level cell polarity, histological sections of

tracheas from three (3 week old) wild type and three Spag6-

deficient mice were examined by light microscopy. H&E staining

revealed that in the wild-type mice, two or three rows of nuclei

were present in the pseudostratified columnar epithelium lining of

the trachea, and the nuclei were oval in shape and oriented in a

basal/apical distribution (Fig. 6A). However, the Spag6-deficient

epithelial cells did not form the pseudostratified columnar

morphology. Only one row of nuclei was present, and the cells

lay relatively flat along the basement membrane, with most cells

having round nuclei (Fig. 6B). The Spag6-deficient tracheal

epithelial cells not only lose the polarized morphology, the

polarized distribution of mucin was also absent. In the wild-type

mice, PAS staining demonstrated that mucin was localized in

apical region of epithelial cells (Fig. 6C). However, this pattern was

never seen in the epithelial cells of Spag6-deficient mice. In

contrast, mucin was present throughout the cytoplasm (Fig. 6D).

The polarized morphology of wild-type tracheal epithelial cells

was also observed in low magnification TEM images, and mucin

was observed on the trachea surface (Fig. 6E). However, the

polarized pattern was lost in the mutant mice, and mucin was not

detected on the surface of the tracheal epithelial cells (Fig. 6F).

The localization of the planar cell polarity protein, Vangl2, was

examined in the tracheas of three wild-type and three Spag6-

deficient mice by immunofluorescence staining. Even though there

was no difference in total expression level of the protein in

trachea/lung between wild-type and the Spag6-deficient mice by

Western blot analysis (Figure S3), it appears that in wild-type

trachea epithelial cells from three-week old mice, Vangl2 signal

was more intense in the apical region (Figure S4A). This polarized

distribution was not evident in the Spag6-deficient epithelial cells

(Figure S4B).

Immunofluorescence staining was also conducted on tracheas

from three week old wild-type and age-matched Spag6-deficient

mice using an anti-a-tubulin antibody. In the trachea of wild-type

mice, cilia were intensely stained. Inside the epithelial cells, a

strong signal was visualized in the apical regions (Figure S4C).

However, in the Spag6-deficient mice, the signal was evenly

distributed throughout the whole cell body (Figure S4D). The

microtubule distribution pattern is consistent with that of the

planar cell polarity (PCP) proteins, suggesting that polarized

microtubules might contribute to the localization of PCP proteins.

One-week mice were analyzed, when the mutant mice did not

show obvious abnormalities related to reduced ciliary motility,

such as hydrocephalus. As in the three-week old wild-type mice,

epithelial cells in the one-week old wild-type mice are polarized as

shown by H&E staining (Fig. 7A), and immunofluorescence

staining using an anti-acetylated tubulin antibody revealed a

sections from wild type and Spag6-deficient mice were examined by immunofluorescence staining using an antibody targeting acetylated tubulin. In
the wild type mice, the cilia-containing signal was continuously observed along the surface of the epithelial cells. However, in the Spag6-deficient
mice, the signal was discontinuous (F).
doi:10.1371/journal.pone.0107271.g003
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Figure 4. Examination of rotational polarity of ciliary axoneme of brain ependymal cells and trachea epithelial cells by transmission
electronic miscroscopy. Axoneme cross-sectional images were taken with a transmission electron microscope. The rotational polarity of each
axoneme was evaluated by the angle of the line connecting the central pair. Notice that the orientation of the lines in wild type mice is similar (A:
brain; C: trachea). while the orientation of the lines in the Spag6-deficient mice varies among axonemes (B: brain; D: trachea). E. Average axoneme
number counted from ten images randomly selected from each group. Three or four images were counted from each mouse, and three wild-type
and three mutant mice were examined. Horizontal lines represent the means and SEMs. * p,0.05.
doi:10.1371/journal.pone.0107271.g004
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strong cilia signal (Fig. 7C). However, the epithelial cells of the

Spag6-deficient mice did not show the polarized morphology.

Compared to the wild-type mice, cilia number is dramatically

reduced (Fig. 7B, 7D). The polarized distribution of a-tubulin is

obvious in the wild-type mice (Figure S5A), but not in the Spag6-

deficient mice (Figure S5B). These findings indicate that the cilia

number and orientation defects are present earlier than 7 days

post-partum.

It has been reported that a feedback loop generated by fluid

flow contributes to cilia polarization [14,15]. Indeed, our findings

of disorganization and reduced number of cilia in ependymal and

tracheal epithelial cells in Spag6-mutants, and alterations in basal

body alignment are similar to those previously described in other

mutant mice as a consequence of reduced ciliary motility. Studies

involving JhylacZ/lacZ mice showed disorganization and altered

axonemal structure of the ependymal cilia. However, the

hydrocephalus appeared to be unrelated to abnormal brain

development or patterning [16]. Observations in ktu-mutant mice

revealed that the PCP protein, Vangl1, localized asymmetrically in

ependymal and tracheal epithelial cells, while the alignment of

basal bodies only differed from wild-type mice in brain ependymal

cells, suggesting that ciliary motility was required in the alignment

of brain ependymal cells, but not for airway cilia [17].

There are other possible mechanisms, in addition to ciliary

motility defects, as causal factors of the phenotypes in SPAG6-

mutant mice. In multi-ciliated cells, basal bodies are replicated

deep within the cytoplasm, and their apical movement and

docking are thought to involve regulated actin assembly [18,19]

and vesicle trafficking [20]. Indeed, actin is enriched at the apical

surface of ciliated epithelial cells [21,22]. Disruption of the actin

cytoskeleton blocks basal body migration and ciliogenesis [19]. In

this case, the ciliogenesis defect is associated with the failure of

basal body docking at the apical plasma membrane. Spag6-

deficient cells may have a disrupted actin cytoskeleton affecting

basal body docking, which traps some basal bodies inside the

cytoplasm where they are degraded, with the result that fewer cilia

develop in the brain ependymal and tracheal epithelial cells.

A recent study demonstrated that silencing of the Spag6 gene in

Xenopus larvae gives rise to disruption of orientation of basal

bodies, suggesting that the planar cell polarity mechanism might

be involved [14]. PCP refers to the polarization of a field of cells

within the plane of a cell sheet [23]. It is a downstream branch of

Wnt signaling [24]. This form of polarization is required for

diverse cellular processes in vertebrates, including convergent

extension (CE) [25] and the establishment of PCP in epithelial

tissues and ciliogenesis [26,27]. In multi-ciliated cells, planar

polarity is present in two distinct models, termed rotational

polarity and tissue-level polarity [28,29]. The former refers to the

alignment of the basal bodies within each multi-ciliated cell, and

the latter to the coordination of many multi-ciliated cells across the

tissue. SEM and high magnification TEM studies clearly

demonstrated that Spag6-deficient epithelial cells in the brain

and trachea lost rotational polarity. Alternatively, SPAG6 may

cause ciliogenesis defects through a role in basal bodies. Pearson et

al. reported that SPAG6 was present in newly assembled basal

bodies [30], and SPAG6 localizes to the center of the transition

zone at the site of central pair assembly [31].

Figure 5. Basal feet polarity of brain ependymal cells and trachea epithelial cells was lost in the Spag6-deficient mice. Basal body
images were taken with a transmission electron microscope. Notice that the basal feet point to the same orientation in the wild type animals (A:
brain; C: trachea). However, they point to different orientation in the Spag6-deficient mice (B: brain; D: trachea). The number of basal body in the
Spag6-deficient mice was significantly reduced in both brain and trachea. The arrows point to the basal feet. E. Average basal feet number counted
from ten images randomly selected from each group. Horizontal lines represent means and SEMs. Three or four images were counted from each
mouse, and three wild-type and three mutant mice were examined. * p,0.05. F. Circular plots of tracheal epithelial cell basal feet orientation in
Spag6-deficient (left) and wild-type mice (right). For each mouse, basal foot orientation from five images was analyzed. For each image, the angel for
one basal foot orientation was set as 0u (or 360u), angels of the rest basal feet were measured. Each plot represents the combined data from three
mice as shown in Figure S2 (* p,0.001 between the two groups).
doi:10.1371/journal.pone.0107271.g005
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Several recent studies revealed that the PCP signaling cascade is

a central regulator of the orientation of cilia-mediated fluid flow.

Disruption of core PCP genes, including the Dishevelled (Dvl1),

Celsr2 and Celsr3 resulted in a randomization of rotational

polarity [32,33,15]. PCP signaling also controls the tissue-level

polarity of multi-ciliated cells, PCP proteins, van Gogh-like 2

(Vangl2) and Frizzled are in this case [29]. A more recent study

indicated that PCP proteins, including Vangl1, Vangl2, Prickle2

(PK2), Dishevelled1 (Dvl1) and Dvl2 localize asymmetrically to the

tracheal epithelial cell cortex [34].

Little is known about the regularity of orientation of basal

bodies in multi-ciliated cells. Previous studies of multi-ciliated cells

suggested that microtubules attached to the basal feet link basal

bodies to one another, and also to the apical junctions [35]. The

classic planar polarity in the Drosophila wing epithelial cells is also

associated with sub-apical microtubules [36,37]. These microtu-

bules are planar polarized, with their plus ends enriched at the

distal face of cells, where Dvl1 and Frizzled localize. It appears

that the apical microtubule network is an upstream regulator of

PCP signaling [38,39]. It is suggested that a similar planar

polarized web of microtubules may also influence planar polarity

of basal bodies. In addition, basal bodies in multi-ciliated cells

make complex connections to both actin and cytokeratin networks,

and these may be involved in polarization [40]. We have

previously shown that SPAG6 is a microtubule binding protein

[1]. It may play a role in stabilizing the microtubule system. In the

absence of SPAG6, sub-apical microtubule stability might be

affected, which could result in disruption of polarized PCP

distribution, causing the basal bodies to lose their polarized

localization.

Defects in mammalian cilia or flagella motility/function caused

by mutations in central apparatus genes appear to depend upon

the genetic background and cellular context. For instance,

mutation of the Pcdp1 gene results in several phenotypes

commonly associated with primary ciliary dyskinesia. Homozy-

gous mutants on a C57BL/6J background develop severe

hydrocephalus and mainly die within the first week of life.

However, on other genetic backgrounds (129S6/SvEvTac), mice

Figure 6. Examination of trachea epithelial cell polarity in three-week old mice. H&E stained tissue demonstrating that two or three rows
of nuclei were seen in the pseudostratified columnar epithelium lining the trachea of the wild-type mice, and the nuclei were oval shape and the two
poles were at basal/apical distribution (Fig. 6A). In contrast, in the Spag6-deficient mice, the cells lie flat along the basement membrane, most cells
had round nuclei (Fig. 6B). PAS staining demonstrated that mucin was localized in apical region of epithelial cells (Dashed arrows in Fig. 6C). However,
this pattern was never seen in the epithelial cells of Spag6-deficient mice, mucin was present through the whole cytoplasm (Fig. 6D). The above-
mentioned differences between wild-type and Spag6-deficient mice were confirmed by TEM with low magnification. The wild-type epithelial cells
show polarized pattern, and mucin was found along the surface in all the three mice analyzed (arrows in Fig. 6E), where the cilia axonemes were
located. However, in the mutant mice, the epithelial cells lost this pattern, and the cells look larger than those in the wild-type mice (arrow heads),
and no mucin was found in any of the three mice analyzed (Fig. 6F). Three wild-type and three mutant mice were analyzed and the results were
similar.
doi:10.1371/journal.pone.0107271.g006
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develop either mild or no hydrocephalus with survival to

adulthood. The respiratory epithelial cilia have a normal

ultrastructure, but beat with reduced frequency. Interestingly,

the male mice are infertile, producing sperm with no visible

flagella, suggesting that the mechanisms regulating the biogenesis

of cilia and flagella are likely to be different [41]. Tracheal

epithelial cilia from Spef2-defficient mice beat at lower frequency

and have a normal 9+2 axonemal structure without apparent

defects in the dynein arms, but epididymal sperm lack recogniz-

able axonemal structures [42]. SPAG16L-null mice show no

evidence of cilia dysfunction, such as hydrocephalus, sinusitis, and

bronchial infection [8], and have tracheal epithelial cells with

motile cilia [12]. However, males are infertile due to severe sperm

motility defects, even though the sperm have a normal axoneme

ultrastructure [8]. In the Spag17-mutant mouse, the rapid

neonatal demise is associated with a profound respiratory

phenotype characterized by immotile cilia and defects in the 9+2

axonemal structure [12]. This is not observed in cilia from

knockouts of the Spag6 and Spag16 genes. Although the genetic

background of mutant mice may significantly influence the

phenotypes, the observations summarized above suggest that

specific central pair genes may have unique roles in different cell

types.

In conclusion, our studies demonstrate that SPAG6 deficiency

causes multiple abnormalities in the function of cilia and ciliated

cells, including defects in sperm flagellar motility; ciliogenesis;

ciliary beat; axoneme orientation; cell morphology and polarity.

Supporting Information

Figure S1 Analysis of cilia in the trachea epithelial cells and

brain ependymal cells by scanning electronic microscopy.

Tracheas and brains from wild type and Spag6-deficient mice

were processed for SEM. Notice that cilia in the brains (A) and

trachea (C) of the wild-type animals sit on the cell surface in a

highly ordered state. However, cilia in the ependymal cells (B) and

trachea (D) of Spag6-deificent mice appeared to be disordered on

the cell surface. Fig. S1 shows cilia in the trachea epithelial cells

and brain ependymal cells by scanning electronic microscopy with

high magnification.

(TIF)

Figure S2 Circular plots of tracheal epithelial cell basal foot

orientation in three individual Spag6-deficient (upper) and three

individual wild-type mice (lower). Five TEM images were

randomly selected from each mouse and basal foot orientations

were measured. Arrow direction represents the mean vector of

cilium orientation per cell; arrow length is the length of the mean

vector, with longer arrows indicating stronger coordination of

orientation. rcell is the length of mean vector and describes

rotational orientation.

(TIF)

Figure S3 Analysis of Vangl2 protein expression level in the

lung/trachea by Western blotting. Lungs/tracheas from three

wild-type and three Spag6-deficient mice were homogenized and

Western blotting was performed with anti-Vangl2 antibody, the

membrane was striped and re-probed with an anti-actin antibody

as a loading control. There was no difference in Vangl2 protein

expression level between the wild-type and Spag6-deficient mice.

(TIFF)

Figure S4 Examination of Vangl2 and a–tubulin localization in

trachea epithelial cells of three-week old mice. The distribution of

the PCP protein, Vangl2, and, a-tubulin was examined by

immunofluorescence staining. More intense signal was detected

in the apical regions in wild-type trachea epithelial cells (arrows in

A for Vangl2 and arrowheads in C for a-tubulin). These proteins

appeared to be distributed evenly throughout the cytoplasm in

cells from Spag6 mutant mice (dashed arrows in B). In the trachea

of wild-type mice, cilia were also intensively stained by an anti-a-

tubulin antibody (arrows in C and D).

(TIF)

Figure S5 Examination of a-tubulin localization in trachea

epithelial cells in one-week old mice. Distribution of a-tubulin is

polarized in the wild-type mice (arrowheads in upper panel).

However, the polarized pattern is not seen in the Spag6-deficient

mice (lower panel), where a-tubulin is evenly distributed

throughout the cytoplasm.

(TIF)

Video S1 Trachea ciliary beat observed by video microscopy.

Cilia from wild-type mice (Spag6 knockout littermate) beat at a

fast rate, and the beat was coordinated, with all the cilia beating in

the same direction at a specific time point.

(AVI)

Video S2 Airway clearance in wild-type mice. Real time video

showing the efficiency of ciliated epithelium in moving particles

(blood cells) in the trachea. Arrows indicate the direction flow.

(AVI)

Video S3 Cilia from Spag6-deficient mice beat at much slower

rate, and the beating is largely uncoordinated. At specific time

Figure 7. Examination of trachea epithelial cell polarity in one-
week old mice. H&E stained tissue demonstrating the polarized
pattern of epithelial cells in the trachea of wild type mice (Fig. 7A), but
not in the Spag6-deficient mice (Fig. 7B). Acetylated tubulin signal is
abundant along the tracheal epithelial cells in the wild-type mice (Fig.
7C), the signal is dramatically reduced in the Spag6-deficient mice (Fig.
7D). Three wild-type and three mutant mice were analyzed and similar
results were observed.
doi:10.1371/journal.pone.0107271.g007
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points, some cilia beat in one direction, while others beat in the

opposite direction.

(AVI)

Video S4 Spag6-deficient mice fail to clear particles from the

airway. Uncoordinated cilia from tracheal epithelium failed to

generate blood cell flow. Arrows indicate the presence of blood

cells stacked at the beginning of tracheal tube. Video is shown in

real time.

(AVI)
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