142 research outputs found
Deep learning-based low-dose CT simulator for non-linear reconstruction methods
Background: Computer algorithms that simulate lower-doses computed tomography (CT) images from clinical-dose images are widely available. However, most operate in the projection domain and assume access to the reconstruction method. Access to commercial reconstruction methods may often not be available in medical research, making image-domain noise simulation methods useful. However, the introduction of non-linear reconstruction methods, such as iterative and deep learning-based reconstruction, makes noise insertion in the image domain intractable, as it is not possible to determine the noise textures analytically. Purpose: To develop a deep learning-based image-domain method to generate low-dose CT images from clinical-dose CT (CDCT) images for non-linear reconstruction methods. Methods: We propose a fully image domain-based method, utilizing a series of three convolutional neural networks (CNNs), which, respectively, denoise CDCT images, predict the standard deviation map of the low-dose image, and generate the noise power spectra (NPS) of local patches throughout the low-dose image. All three models have U-net-based architectures and are partly or fully three-dimensional. As a use case for this study and with no loss of generality, we use paired low-dose and clinical-dose brain CT scans. A dataset of (Formula presented.) paired scans was retrospectively obtained. All images were acquired with a wide-area detector clinical system and reconstructed using its standard clinical iterative algorithm. Each pair was registered using rigid registration to correct for motion between acquisitions. The data was randomly partitioned into training ((Formula presented.) samples), validation ((Formula presented.) samples), and test ((Formula presented.) samples) sets. The performance of each of these three CNNs was validated separately. For the denoising CNN, the local standard deviation decrease, and bias were determined. For the standard deviation map CNN, the real and estimated standard deviations were compared locally. Finally, for the NPS CNN, the NPS of the synthetic and real low-dose noise were compared inside and outside the skull. Two proof-of-concept denoising studies were performed to determine if the performance of a CNN- or a gradient-based denoising filter on the synthetic low-dose data versus real data differed. Results: The denoising network had a median decrease in noise in the cerebrospinal fluid by a factor of (Formula presented.) and introduced a median bias of (Formula presented.) HU. The network for standard deviation map estimation had a median error of (Formula presented.) HU. The noise power spectrum estimation network was able to capture the anisotropic and shift-variant nature of the noise structure by showing good agreement between the synthetic and real low-dose noise and their corresponding power spectra. The two proof of concept denoising studies showed only minimal difference in standard deviation improvement ratio between the synthetic and real low-dose CT images with the median difference between the two being 0.0 and +0.05 for the CNN- and gradient-based filter, respectively. Conclusion: The proposed method demonstrated good performance in generating synthetic low-dose brain CT scans without access to the projection data or to the reconstruction method. This method can generate multiple low-dose image realizations from one clinical-dose image, so it is useful for validation, optimization, and repeatability studies of image-processing algorithms.</p
Numerical optimisation of thermoset composites manufacturing processes: A review
The impetus for higher performance, robustness and efficiency in the aerospace, automotive and energy industries has been reflected in more stringent requirements which the composite manufacturing industry needs to comply with. The process design challenges associated with this are significant and can be only partially met by integration of simulation in the design loop. The implementation of numerical optimisation tools is therefore necessary. The development of methodologies linking predictive simulation tools with numerical optimisation techniques is pivotal to identify and therefore develop optimal design conditions that allow full exploitation of the efficiency opportunities in composite manufacturing. Numerical and experimental results concerning the optimisation techniques and methodologies implemented in literature to address the optimisation of thermoset composite manufacturing processes are presented and analysed in this study
Tachyarrhythmia in patients with congenital heart disease:inevitable destiny?
Contains fulltext :
171611.pdf (publisher's version ) (Open Access)The prevalence of patients with congenital heart disease (CHD) has increased over the last century. As a result, the number of CHD patients presenting with late, postoperative tachyarrhythmias has increased as well. The aim of this review is to discuss the present knowledge on the mechanisms underlying both atrial and ventricular tachyarrhythmia in patients with CHD and the advantages and disadvantages of the currently available invasive treatment modalities
Application of Deep Learning on Mammographies To Discriminate Between Low and High-Risk Dcis for Patient Participation in Active Surveillance Trials
BACKGROUND: Ductal Carcinoma In Situ (DCIS) can progress to invasive breast cancer, but most DCIS lesions never will. Therefore, four clinical trials (COMET, LORIS, LORETTA, AND LORD) test whether active surveillance for women with low-risk Ductal carcinoma In Situ is safe (E. S. Hwang et al., BMJ Open, 9: e026797, 2019, A. Francis et al., Eur J Cancer. 51: 2296-2303, 2015, Chizuko Kanbayashi et al. The international collaboration of active surveillance trials for low-risk DCIS (LORIS, LORD, COMET, LORETTA), L. E. Elshof et al., Eur J Cancer, 51, 1497-510, 2015). Low-risk is defined as grade I or II DCIS. Because DCIS grade is a major eligibility criteria in these trials, it would be very helpful to assess DCIS grade on mammography, informed by grade assessed on DCIS histopathology in pre-surgery biopsies, since surgery will not be performed on a significant number of patients participating in these trials.
OBJECTIVE: To assess the performance and clinical utility of a convolutional neural network (CNN) in discriminating high-risk (grade III) DCIS and/or Invasive Breast Cancer (IBC) from low-risk (grade I/II) DCIS based on mammographic features. We explored whether the CNN could be used as a decision support tool, from excluding high-risk patients for active surveillance.
METHODS: In this single centre retrospective study, 464 patients diagnosed with DCIS based on pre-surgery biopsy between 2000 and 2014 were included. The collection of mammography images was partitioned on a patient-level into two subsets, one for training containing 80% of cases (371 cases, 681 images) and 20% (93 cases, 173 images) for testing. A deep learning model based on the U-Net CNN was trained and validated on 681 two-dimensional mammograms. Classification performance was assessed with the Area Under the Curve (AUC) receiver operating characteristic and predictive values on the test set for predicting high risk DCIS-and high-risk DCIS and/ or IBC from low-risk DCIS.
RESULTS: When classifying DCIS as high-risk, the deep learning network achieved a Positive Predictive Value (PPV) of 0.40, Negative Predictive Value (NPV) of 0.91 and an AUC of 0.72 on the test dataset. For distinguishing high-risk and/or upstaged DCIS (occult invasive breast cancer) from low-risk DCIS a PPV of 0.80, a NPV of 0.84 and an AUC of 0.76 were achieved.
CONCLUSION: For both scenarios (DCIS grade I/II vs. III, DCIS grade I/II vs. III and/or IBC) AUCs were high, 0.72 and 0.76, respectively, concluding that our convolutional neural network can discriminate low-grade from high-grade DCIS
Application of deep learning on mammographies to discriminate between low and high-risk DCIS for patient participation in active surveillance trials
Background: Ductal Carcinoma In Situ (DCIS) can progress to invasive breast cancer, but most DCIS lesions never will. Therefore, four clinical trials (COMET, LORIS, LORETTA, AND LORD) test whether active surveillance for women with low-risk Ductal carcinoma In Situ is safe (E. S. Hwang et al., BMJ Open, 9: e026797, 2019, A. Francis et al., Eur J Cancer. 51: 2296–2303, 2015, Chizuko Kanbayashi et al. The international collaboration of active surveillance trials for low-risk DCIS (LORIS, LORD, COMET, LORETTA), L. E. Elshof et al., Eur J Cancer, 51, 1497–510, 2015). Low-risk is defined as grade I or II DCIS. Because DCIS grade is a major eligibility criteria in these trials, it would be very helpful to assess DCIS grade on mammography, informed by grade assessed on DCIS histopathology in pre-surgery biopsies, since surgery will not be performed on a significant number of patients participating in these trials. Objective: To assess the performance and clinical utility of a convolutional neural network (CNN) in discriminating high-risk (grade III) DCIS and/or Invasive Breast Cancer (IBC) from low-risk (grade I/II) DCIS based on mammographic features. We explored whether the CNN could be used as a decision support tool, from excluding high-risk patients for active surveillance. Methods: In this single centre retrospective study, 464 patients diagnosed with DCIS based on pre-surgery biopsy between 2000 and 2014 were included. The collection of mammography images was partitioned on a patient-level into two subsets, one for training containing 80% of cases (371 cases, 681 images) and 20% (93 cases, 173 images) for testing. A deep learning model based on the U-Net CNN was trained and validated on 681 two-dimensional mammograms. Classification performance was assessed with the Area Under the Curve (AUC) receiver operating characteristic and predictive values on the test set for predicting high risk DCIS-and high-risk DCIS and/ or IBC from low-risk DCIS. Results: When classifying DCIS as high-risk, the deep learning network achieved a Positive Predictive Value (PPV) of 0.40, Negative Predictive Value (NPV) of 0.91 and an AUC of 0.72 on the test dataset. For distinguishing high-risk and/or upstaged DCIS (occult invasive breast cancer) from low-risk DCIS a PPV of 0.80, a NPV of 0.84 and an AUC of 0.76 were achieved. Conclusion: For both scenarios (DCIS grade I/II vs. III, DCIS grade I/II vs. III and/or IBC) AUCs were high, 0.72 and 0.76, respectively, concluding that our convolutional neural network can discriminate low-grade from high-grade DCIS.</p
Long-Term Impact of Single Epilepsy Training on Knowledge, Attitude and Practices: Comparison of Trained and Untrained Rwandan Community Health Workers
Objectives: To close the epilepsy treatment gap and reduce related stigma, eradication of misconceptions is importantIn 2014, Community Health Workers (CHWs) from Musanze (Northern Rwanda) were trained on different aspects of epilepsy. This study compared knowledge, attitude and practices (KAPs) towards epilepsy of trained CHWs 3Â years after training, to untrained CHWs from Rwamagana (Eastern Rwanda).Methods: An epilepsy KAP questionnaire was administered to 96 trained and 103 untrained CHWs. Demographic and intergroup KAP differences were analysed by response frequencies. A multivariate analyses was performed based on desired and undesired response categories.Results: Epilepsy awareness was high in both groups, with better knowledge levels in trained CHWs. Negative attitudes were lowest in trained CHWs, yet 17% still reported misconceptions. Multivariate analysis demonstrated the impact of the training, irrespective of age, gender and educational level. Knowing someone with epilepsy significantly induced more desired attitudes.Conclusion: Despite demographic differences between trained and untrained CHWs, a single epilepsy training resulted in significant improvement of desired KAPs after 3Â years. Nation-wide CHW training programs with focus on training-resistant items, e.g., attitudes, are recommended
- …