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Abstract

Object localisation, in the context of regular images, of-
ten depicts objects like people or cars. In these images,
there is typically a relatively small number of objects per
class, which usually is manageable to annotate. However,
outside the setting of regular images, we are often con-
fronted with a different situation. In computational pathol-
ogy, digitised tissue sections are extremely large images,
whose dimensions quickly exceed 250’000 × 250’000 pix-
els, where relevant objects, such as tumour cells or lympho-
cytes can quickly number in the millions. Annotating them
all is practically impossible and annotating sparsely a few,
out of many more, is the only possibility. Unfortunately,
learning from sparse annotations, or sparse-shot learning,
clashes with standard supervised learning because what is
not annotated is treated as a negative. However, assigning
negative labels to what are true positives leads to confu-
sion in the gradients and biased learning. To this end, we
present exclusive cross-entropy, which slows down the bi-
ased learning by examining the second-order loss deriva-
tives in order to drop the loss terms corresponding to likely
biased terms. Experiments on nine datasets and two differ-
ent localisation tasks, detection with YOLLO and segmenta-
tion with Unet, show that we obtain considerable improve-
ments compared to cross-entropy or focal loss, while often
reaching the best possible performance for the model with
only 10-40% of annotations.

1. Introduction

With the advent of deep learning and big datasets, object
localisation, be it bounding box detection [1, 2, 3, 4, 5, 6],
semantic segmentation [7, 8, 9], or instance segmentation
[10, 11, 12, 13], has progressed with leaps and bounds ever
since deformable part models [14, 15] and selective search
[16, 17]. The basic assumption for all above localisation
methods is that all relevant objects in the image are anno-

Figure 1: Left: A digitised tissue section containing mil-
lions of cells. An image typically corresponds to only a
small part of smaller coloured-in regions in the whole slide.
Only a handful of annotations are available, and after great
effort (about 6’000 annotations in our data). Right: with
red the non-exhaustively annotated objects in a small 1’000
by 1’000 region of a tissue slide image, roughly 30% of the
total number of objects in green (right).

tated. This is a reasonable assumption for regular images
like in PASCAL VOC 2007 [18] or MSCOCO [19], con-
taining on average 512 × 512 -or sometimes up to 1’000 ×
1’000- images with no more than a dozen objects per class
per image. Outside the realm of regular images, however,
we are often confronted with a different situation: digi-
tised tissue sections are typically very large images, of file
size around 1-10 GB, whose dimensions can quickly ex-
ceed 250’000 × 250’000 px, where relevant objects, such
as tumour cells or lymphocytes can quickly number in the
millions. Annotating them all, even relying on regions-of-
interest, can be hard and in practice only sparse annotations
are feasible. In this paper we focus on learning from sparse
annotations, coined sparse-shot learning, especially when
the objective is localising an extreme numbers of objects.

Learning from sparse annotations clashes with super-
vised learning, especially in the context of object locali-
sation. In the absence of any other knowledge, the typ-
ical assumption is to assign a negative label to all loca-
tions in the image that are not annotated as (true) positives.
This is a suboptimal choice on two grounds. For one, it is
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very likely that the annotator could not annotate all relevant
objects or that simply they missed many of them. When
blindly assuming as negative all unannotated areas, for ex-
ample in digitised tissue sections, the unannotated objects
often amount to more than 90% of the total number of ob-
jects [20, 21, 22]. Secondly and more importantly though,
assigning a negative label to what is in reality a true pos-
itive leads to conflicting gradients [23], that in turn guide
the model to poor convergence and generalisation. Sparse-
shot learning describes a setting, where standard supervised
methods are ill-suited, both from a practical and method-
ological perspective [24].

Learning given missing, or few, annotations has been ex-
plored in the past, albeit in different scenarios than sparse-
shot learning. In weakly supervised learning [25, 26] an
image-level label is provided, without localisation. The
model is then asked to jointly infer likely object locations,
as well as learn an accurate classification model. How-
ever, when there exist no image-level label, as is the case in
many object detection datasets, this type of weak learning
cannot infer any localisation labels. Some weakly super-
vised learning approaches include creating weak pseudo-
labels for objects based on confident predictions [27, 28].
Sparse-shot learning is similar in that it assumes all unan-
notated areas to be potentially negatives, so in a way they
correspond to weak negative labels. A key difference is that
sparse-shot learning focuses on rejecting specific subsets of
these weak negative labels that are likely to add bias and, it
does not create new positive labels for object detection.

Focusing on whole images rather than locations in im-
ages, in semi-supervised learning [29] the goal is to learn
from both annotated and unannotated images. Unanno-
tated images are hence leveraged to learn better and more
general image-level classifiers. Similarly, few-shot learn-
ing [30] utilises a small number of exhaustively annotated
images. Sparse-shot learning, on the other hand, describes
a succinctly different setting often encountered in practice:
learning localisation models from large images, where only
a minute portion of the relevant locations are annotated dur-
ing training. In this work, our contributions are as follows:

1. We introduce the problem of sparse-shot setting, which
is predominant in several imaging scenarios in medical
imaging, where acquiring high-quality exhaustive an-
notations is quite often downright impossible.

2. We provide an analysis showing that the likely culprit
leading to poor optimisations with sparse-shot learning
is the high speed of learning attributed to biased an-
notations, and not the biased annotations themselves.
To this end, we introduce a novel learning objective
coined exclusive cross-entropy (ECE) that incorporates
a simple cut-off threshold to discard samples contribut-
ing large second-order derivatives to the loss, which

are the ones speeding up biased learning.

3. Via extensive experimentation on nine datasets and
two state-of-the-art architectures, YOLLO [4] and
Unet [7], we show that the exclusive cross-entropy
generalises in both detection and segmentation. Inter-
estingly, the learned models trained in data, where only
10-40% of the annotations are provided, often reach
the same performance as the same models trained
with exhaustive annotations, especially in segmenta-
tion tasks.

2. Related work

Learning with weak supervision has been a popular area
of research. In the work of [26], a weakly supervised learn-
ing method is proposed to mediate the effect of partially
annotated localisations. They rely on a hybrid dataset con-
taining both image- and instance-level labels, thus render-
ing the method applicable on data with only instance-level
labels. Recently, [23] propose to use the similarity between
classes (organs) to merge them together and train on a sim-
pler, more general task. Unlike our work, they rely on mul-
tiple classes that are similar while ignoring the background
that is by definition dissimilar.

In the work of [31], noisy label learning was explored
with loss regularisation focusing during the early stages of
training. Similar to weak supervision, transfer learning is
employed for the cases of only low information loss. In our
sparse-shot learning, however, we have the extreme case of
as little as 10% of annotated objects. This results in noisy
label learning, creating noisy pseudo-labels which accumu-
late biased gradient updates. In addition, early learning
regularisation [31] penalises the loss function based on the
weak labels it iteratively creates, which can lead to a con-
tinuous cycle of wrong predictions caused by increasingly
more mistakes.

Learning given outliers and imbalanced data has also
been explored. In the work of [32] the Huber loss for dense
object detection is used to address outlier samples. The Hu-
ber loss aims to put smaller weights on outlier cases of hard
examples that generate larger errors. Non-exhaustive anno-
tations, however, present themselves with a different chal-
lenge since the missing annotations are plentiful, and they
are not outliers; down weighing them leads to discarding
potentially important data during learning. Recently, focal
loss [2] has also offered a significant step towards arbitrat-
ing the effect of unforeseen data imbalance, by using the
model predictions to weigh more infrequent classes. How-
ever, with non-exhaustive annotations the model predictions
are inevitably biased due to the incorrect assignment of
pseudo-labels to the unannotated data points. Thus, focal
loss is sensitive in the absence of exhaustive annotations.
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3. Sparse-shot learning
We first introduce the problem setting of sparse-shot

learning. We then discuss existing methods from the lit-
erature and present exclusive cross-entropy (ECE).

3.1. Problem setting

Let I = (Im)Mm=1 be a dataset of M images, where each
image Im = {xi, yi}, i ∈ [1, N ] has a maximum of N rel-
evant objects, and each object, xi, in the image is assigned
one class yi ∈ {1, . . . , C} for C number of classes. To
reduce notation clutter whenever the subscript m can be in-
ferred by the context, we drop it. xi can be a pixel, or a
bounding box related to an object in an image. For clarity
of exposition, we focus first on the binary case, yi ∈ {0, 1}.

In the standard fully supervised setting, a popular choice
is the cross-entropy loss

L = −
∑
xi∈I

log p(yi|xi). (1)

For compactness, we will denote the positive predictions
pi = p(yi|xi) and the negative ones by 1−pi = 1−p(yi|xi).

In sparse-shot learning, we do not have all relevant labels
at training time; that is, we do not have exhaustive knowl-
edge of yi : ∀xi ∈ I . Instead, we have the annotations
yi for a few locations only, xi ∈ F , where F ⊂ I is our
foreground knowledge. The rest of the unannotated image,
F = I − F , contains both irrelevant background (set B)
FB for which yi = 0, ∀xi ∈ FB , as well as locations FU

that belong to one of the relevant classes, yi = 1, .., C. Ex-
panding equation (1) to incorporate these subsets, we have

L =−
∑
xi∈F

log pi

−
∑
xi∈F

[
yi log pi + (1− yi) log

(
1− pi

)]
= LF + LF

(2)

In the absence of any knowledge of annotations in F ,
there exist two following options from the literature to com-
pute the loss in equation (2).

Unannotated regions as background. Following the
paradigm of standard object localisation [33, 34, 35, 2], all
that is not included in the set of annotations is set to be
background. That is, F ≡ B. This approach has the draw-
back that it includes true positive samples in the set of true
negative samples, causing bias which adds to the loss as

bias = −
∑

xi∈F̄U

log
(
1− pi

)
(3)

As a result, when optimising the parameters of the neural
network, the model gets confused as it is asked to differen-
tiate between samples that are virtually identical in appear-
ance with opposite labels. This pushes the model parame-
ters to poor local minima and, thus, conflicting predictions.

Weak supervision. The predominant paradigm, in sim-
ilar setups where annotations are partly missing from an
image, is weakly supervised learning. Many variants of
weakly supervised learning have been explored [36, 26, 37,
38] in this context. The general idea amongst them is that
the model f is trained for R rounds. The model from a pre-
vious round t is used to predict the labels of unknown sam-
ples, yi = argmax p(yi|xi; θt), often referred to as pseudo-
labels. The pseudo-labels are then used together with the
true labels to minimise cross-entropy in equation (2) and
obtain the updated model parameters, θt+1. However, these
new pseudo-labels introduce bias caused by wrong, false
positive, assignments of objects, originally associated with
the background set F . These mistakes add a bias term to
the loss described as

bias = −
∑
r∈R

[ ∑
xi∈F̄Ur,t

log
(
1− pi

)
+

∑
xi∈F̄r,t

log
(
1− pi

)]
(4)

where FUr,t ⊆ FU , Fr,t corresponds to the weakly anno-
tated labels by model t at round r. In that respect, weak
supervision might eventually do more harm than good, be-
cause it biases the final classifier not only on one label side
(yi = 0) but all.

3.2. Motivation for exclusive cross-entropy

In the absence of exhaustive ground truth knowledge in
the background, any learning algorithm will inevitably in-
troduce bias to the model parameters. Ideally, for sparse-
shot learning, we want an algorithm that takes advan-
tage of the background without disproportionately biasing
the model parameters either towards pseudo-positive or
pseudo-negative labels.

To this end, rather than fixating on how to optimally in-
fer the missing annotations yi : ∀xi ∈ F , we focus on the
learning dynamics of the classifier and how we can opti-
mally influence these dynamics in the sparse-shot learning
setting. The objective is to discover background samples -
positive or negative- that are likely to add significant bias to
the learning, and skip them. Specifically, in the absence of
any knowledge of annotations in the background, we ten-
tatively consider all samples in the background as negative
samples such that we at least do not add bias to the positive
samples in the training set; as noted in equation (3).
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Figure 2: When annotations are missing, unannotated data
cause learning models to near biased craters due to incor-
rect information. One way to improve, is to eliminate all in-
stances containing bias, but that would mean eliminating all
background examples in non-exhaustively annotated sets.
Instead, we propose to simply slow down the pace of learn-
ing, captured by d2 L

dt2 , coming from the unannotated data
while maintaining the pace of learning from certain anno-
tated data. That way, the model will move faster towards
the unbiased crater and eventually the desired solution in
spite of the unavoidable bias.

3.2.1 Exclusive cross-entropy for sparse-shot learning

Although in the beginning of the training, any prediction
will likely be highly inaccurate, a model is still prone to re-
turning highly confident predictions for both samples in F
and F . This is known as overconfidence in neural network
predictions when the softmax and sigmoid activation func-
tions are used for classification [39, 40, 41]. This effect is
due to the nature of cross-entropy in equation (1), which at-
tains the lowest score when the model predictions log p are
the highest (either p = 1 or 1− p = 1 for positive and neg-
ative samples respectively). It is particularly problematic in
the case of missing annotations, as the model will be en-
couraged to make overconfident predictions for samples in
the training, whose annotations are not given but inferred;
thus often wrong.

To motivate how to exploit the learning dynamics to
break out of this paradox, we illustrate in figure 2 a hypo-
thetical optimisation landscape in gradient descent. Figure
2 highlights the scenario where the bias and the dynamics
of learning may adversely affect the final solution. For the
purpose of the explanation and without loss of generality, in
this example we assume we have one unbiased minimum
centred in an unbiased crater, which we would obtain if
we had perfect knowledge of all relevant annotations in the
background. Next to our unbiased crater, there exist mul-
tiple biased ones caused by the addition of biased annota-
tions. In reality, neural networks exhibit multiple equivalent
minima, however, this does not affect the motivation. Our
hypothesis is that when learning from incorrect annotations,
models converge to the minima in biased craters; i.e. their
performance would not be as good as models trained on all
correct annotations.

Ideally, we want the model to enter the unbiased crater,
as in that case it will almost certainly converge to the op-
timal parameters with standard gradient descent. Unfortu-
nately, the biased gradients will inevitably push the model
towards one of the biased craters. One way to limit this,
is to make sure the model learns from the unannotated
background samples at a slower speed than it does from
the certain foreground ones. As learning is captured by
the first derivative of the loss with respect to time, dL

dt
(derivatives with respect to parameters correspond to op-
timal model steps), the speed of learning is captured by the
second derivative with respect to time, d2 L

dt2 . In other words,
we want the second derivative of the background loss to be
small, or even zero, compared to the second derivative of
the foreground loss, i.e.,

d2 LF
dt2

≪ d2 LF

dt2
(5)

If equation (5) holds, that indicates that the model learns
faster from the positive samples, compared to negative ones,
thus increasing the chances of reaching the unbiased crater
before getting trapped in a biased one. Moving the detailed
computations to the supplementary material, the derivative
equation can be expressed as

d2 LF
dt2

∝ pm(1− p)n, (6)

with polynomial roots p = 0 and 1 − p = 0. To make
sure that the second order derivative is zero or almost zero,
we shall exclude training samples, in the unannotated areas
F , which have high confidence predictions. Since all unan-
notated samples are assigned a weak negative label, we in-
troduce an exclusivity threshold term ρ to the cross-entropy
loss in equation (2), only for the unannotated areas F .

L = −
∑
xi∈F

log pi −
∑
xi∈F

δ(pi < ρβ) log
(
1− pi

)
(7)

where β is an annealing hyper-parameter and δ(·) is the
Kronecker delta function. As learning progresses and
the model improves, predictions will become successively
more confidently accurate and, hence, the threshold require-
ment can be relaxed over time by a less strict β. Note that
equation (7) can support multiple classes by modifying the
log probability log

(
1−pi

)
accordingly. We refer to the loss

in equation (2) as exclusive cross-entropy (ECE).

3.2.2 Intuitive motivation and discussion

Using exclusive cross-entropy enforces that the model
should not be over-confident when it is too early for any
model to be accurate. In contrast to cross-entropy, exclusive
cross-entropy attempts to ignore risky high-confidence pre-
dictions and does not encourage the model to assign high
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scores to as many samples as possible. High-confidence
predictions, without sufficient training, run the risk of be-
ing false positives/negatives and will wrongfully push the
model in the wrong direction. Low-confidence unanno-
tated data corresponding to false negatives (i.e. unlabelled
objects), on the other hand, will have small gradient mag-
nitudes due to their low score, but their direction will, as
learning progresses, hopefully tend to be in the right, ap-
proximate, direction. In order to avoid converging too
quickly to spurious local minima, the goal is to slow down
the learning speed from high-risk unannotated data and
reach an unbiased crater first.

Specifically, in the beginning of standard training, the
classifier is de facto imprecise. Any confidence in predic-
tions are, thus, likely to be misplaced, certainly so for train-
ing samples that miss a manual annotation. Given that our
background training samples are all considered as tentative
negatives (yi = 0,∀xi ∈ F), let us consider the case of
a high confidence positive prediction, p(yi = 1|xi) > ρ,
for a real true positive object. The first possible reason-
ing, is that the model is already capable of recognising ob-
jects correctly as positive predictions, yi = 1. This means
that the model is already accurate and there is no reason it
should receive an update via back-propagation. The second
possibility, is that the pseudo-negative annotation is wrong.
Back-propagating would update the model towards an in-
correct direction. Therefore, not only there is no big need to
update the model, but we could be adding bias due to incor-
rect pseudo-annotations. Given that we do not really know
the true label, it is, therefore, better to exclude the contri-
bution of this training sample to the gradient at this round.
A similar argument can be constructed for high confidence
negative predictions, p(yi = 0|xi) > ρ.

It is important to note that the annealing and exclusiv-
ity threshold employed, are not equivalent as changing the
learning rate nor ignoring unannotated objects altogether.
Exclusive cross-entropy is similar to a dynamic switchable
learning rate; where the rate is dynamically set to zero if
training examples are unannotated.

Computational cost. As the exclusive cross-entropy is
computed using the already calculated p(yi|xi), the compu-
tational cost is virtually identical to standard cross-entropy.
No retraining, compared to weakly supervised learning, or
other expensive processes are required.

Annealing ρ. Our primary objective when satisfying
equation (5) is that the model reaches the unbiased crater
first. Once in the unbiased crater, the model will eventually
reach the desired minimum. By annealing threshold ρ by
parameter β we ensure that learning is influenced less by
biased loss terms at the early stages and takes more sam-
ples into account at the later stages. In experiments, we find

that the learning algorithm is robust with respect to ρ and β;
so we use the same ρ and β for all our datasets and obtain
consistently good performance.

Class imbalance. In object localisation, class imbalance
can have strong effects on learning [3, 4]. Especially in
large images such as the tissue sections, the amount of ir-
relevant or background object instances dwarf in compari-
son to the few positive annotations provided by the anno-
tator. To account for the severe class imbalance, we can
complement the exclusive cross-entropy with the focal loss
re-weighting scheme, u(pi) = −α(1−pi)

γ log(pi), as orig-
inally proposed by [2]. In this case, the focal exclusive
cross-entropy is computed as

L = −
∑
xi∈F

log pi −
∑
xi∈F

δ(pi < ρβ)u
(
1− pi

)
(8)

4. Experiments
4.1. Experimental Setup

Data. We evaluate on the following nine datasets: CoN-
SeP [13], CPM15 [36], CPM17 [36], CRCHisto [6], Kumar
[42], MoNuSeg [42], WBC-NuClick [43], TNBC [44], and
our own tumour-infiltrating lymphocyte (TIL) localisation
benchmark containing 16 Hematoxylin and Eosin (H&E)
stained digital biopsies of whole slide images (WSIs). The
largest dataset is TIL with 440’734 images and 45’127 cell
annotations, including the 6’631 lymphocytes. The second-
largest dataset is WBC-NuClick with 1’463 images, while
the second most annotated dataset is the CRCHisto dataset
with 29’748 cells. We provide all details and visual exam-
ples in the supplementary material.

Evaluation. All datasets, except for TIL, contain images
that are only small portions of the digitised tissue sections,
such that they can be exhaustively annotated. We create
non-exhaustive annotation set variants with 10%, ..., 90% of
the annotations (100% is the full set). To make sure the dif-
ferent variants are comparable, we include all annotations in
every smaller variant in the variants above (the 80% variant
annotations are also in the 90% variant and so on).

We evaluate segmentation using DICE and object detec-
tion using F1 score. The TIL dataset contains only a very
small portion of all cells, thus we cannot use precision-
related metrics, as unknown true positives would be counted
as true negatives. Instead, given that in the TIL dataset we
have annotations for other cell types that are similar to lym-
phocytes and are the most likely false positives, we propose
the exclusive recall computed as Recexc(y) = Rec(y) · (1−
Rec(̸= y)). While still not accounting for the missed true
positives, exclusive recall down weighs the score when pre-
dictions correspond to wrong cell types and can quantita-
tively score relative performance between methods.
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Architectures. The exclusive cross-entropy is agnostic to
the specific segmentation or detection model and architec-
ture. We experiment with two state-of-the-art methods:
YOLLO [4] for object detection and Unet [7] for segmenta-
tion using standard open-source implementation. We train
the models from scratch per non-exhaustive set (10 sets per
dataset) and with no pre-training. For hyper-parameter tun-
ing we rely only on the TNBC dataset for segmentation, and
reuse the same parameters in all other datasets, experiments
and tasks (both for segmentation and detection). We use no
task-specific or dataset-specific parameters for the exclu-
sive cross-entropy. In all 161 experiments with exclusive
cross-entropy with YOLLO and Unet on all nine datasets
use the same hyperparameter values, to demonstrate gen-
erality and robustness. We include in the supplementary
material all the model and training parameters.

4.2. Ablation study

Cross-entropy variants and weakly supervised learn-
ing. We report results with exclusive cross-entropy as well
as weakly-supervised learning on the 30% and 60% non-
exhaustive variants of the TNBC dataset. We start with
training using standard cross-entropy. Then, we use the
trained model to update the labels in the respective non-
exhaustively annotated training sets. If the prediction for an
unannotated sample is pi > τ , then the sample becomes a
pseudo-positive, we re-train and repeat the process. Noisy
label learning with early learning regularisation [31], per-
forms similar to the standard weakly-supervised learning,
as shown further in the supplementary material.

We present results in table 1. We observe that weak su-
pervised learning does not increase the performance of the
standard cross-entropy training. A possible reason -in con-
trast to the regular uses of weak supervision [45]- is that
objects in medical images are easy to confuse. Weak su-
pervision works better when the expected confusion is not
high. For standard cross-entropy, focal reweighing is not
beneficial, likely due to overly down-weighing the actual
true positives. Adding focal reweighing, to the unannotated
F group, in the exclusive cross-entropy is beneficial and
hence, we use focal reweighing in all subsequent experi-
ments with exclusive cross-entropy.

Exclusivity threshold and annealing schedules. Next,
we ablate different exclusivity thresholds and annealing
schedules. We present two experiments with fixed ρ at 0.5
and 0.75 (ρ = 1 is standard cross-entropy). We also present
two experiments with linear and sigmoid scheduling in an-
nealing ρ. We gather results in table 2. We observe con-
sistently good performance no matter the type of threshold
and scheduling, with sigmoid scheduling doing best. In the
following experiments, we will use the sigmoid schedule.

Table 1: Exclusive cross-entropy vs. weak supervision for
30% and 60% annotations on TNBC for the detection task.

τ F1@30% F1@60%

Cross-entropy 0.65 0.7
+weak supervision 0.75 0.64 0.68
+weak supervision 0.50 0.62 0.64
+focal loss 0.36 0.49

Exclusive cross-entropy 0.70 0.75
+focal loss 0.74 0.80

Table 2: Annealing scheduling study on the 30% and 60%
sets of TNBC for the detection task.

F1@30% F1@60%

Fixed ρ = 0.75 0.68 0.70
Fixed ρ = 0.50 0.66 0.71
Linear ρ = 0.75 · ρt, ρt : 0 → 1 0.71 0.73
Sigmoid ρ = σ(ρLinear) 0.74 0.80

Table 3: Quantitative results on the TIL localisation dataset
scored by the exclusive recall metric.

Cross-entropy Focal loss Huber loss ECE

Recexc (↑) 0.85 0.81 0.69 0.88

4.3. Sparse-shot segmentation

We present results for segmentation in figure 4 using
standard cross-entropy (CE) (assuming what is not anno-
tated is a negative sample), focal loss (FL) [2], Huber
loss [32], and exclusive cross-entropy (ECE). The exclusive
cross-entropy attains top performance in most datasets and
settings. Importantly, the exclusive cross-entropy reaches
its near maximum performance consistently with only 40%
of the annotations, no matter the dataset. Compared to stan-
dard cross-entropy, exclusive cross-entropy improves up to
85%, especially with sparser annotations (e.g., 10% or 20%
variants) and harder datasets (datasets that CE scores less
than 0.5 in DICE score with 10% of annotations). A sur-
prising result is that focal loss achieves relative better per-
formance in some more sparsely annotated sets, but its per-
formance drops with more exhaustively annotated sets; and
is significantly worse than the other methods. A possible
cause for this finding is that the focal loss was originally
designed for class object loss imbalance during detection
with exhaustive annotations [2]. Therefore, the focal loss
cross-entropy component, applied to all terms of the loss
function, down weighs both F and F groups equally.

4.4. Sparse-shot detection

We present results for box detection in figure 5 with the
same hyper-parameters as in segmentation. In MoNuSeg,
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Figure 3: Qualitative results of ground truth and predictions for datasets TNBC, CPM17, CRCHisto, and MoNuSeg on the
30% non-exhaustive annotation variants for detection (a) and segmentation (b).
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Figure 4: Segmentation results on the non-exhaustive sets of the datasets
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Figure 5: Detection results on the non-exhaustive sets of the datasets

WBC-Nuclick and TNBC exclusive cross-entropy loss out-
performs the standard cross-entropy and the focal loss
consistently by about 10% in the 10-50% variants. In
CRCHisto, CoNSeP, Kumar and CPM15, exclusive cross-
entropy still maintains top performance, but for different
non-exhaustive variants it is matched by different methods,
showing more robustness in the final predictions. A possible
reason for the smaller increase of performance compared to
segmentation is that segmentation is more challenging than
detection. This can be due to the fact that the number of
output objects, pixels, in segmentation is larger than the
number of objects, cells, in detection. Hence, the number
of unannotated objects is relatively lower in the detection
task. Last, focal loss appears to have trouble with balancing
between the foreground and background due to its uniform
weighing strategy.

We, furthermore, present results in terms of exclusive re-
call on the TIL dataset in table 3. Exclusive cross-entropy
performs best, locating correctly the most true positive lym-
phocytes, while not confusing them with other visually sim-
ilar cell types like tumour cells or fibroblasts. Upon vi-
sual inspection, the difference between the methods is even
greater but not quantitatively reflected due to the large num-
ber of missing annotations; as discussed in the supplemen-
tary material.

4.5. Qualitative results

We show in figure 3 qualitative results for cross-entropy
and exclusive cross-entropy. Cross-entropy tends to either
under-predict, mostly in detection, or over-predict in seg-
mentation. Exclusive cross-entropy correctly detects most

objects while avoiding erroneous background predictions.

5. Conclusion

In this work, we focus on the problem of sparse-shot
learning, especially in the context of localising extremely
many objects. Sparse-shot learning is particularly impor-
tant for certain types of images, like digitised tissue sec-
tions in computational pathology, easily exceeding resolu-
tions of 250’000 × 250’000 pixels and millions of cells to
be localised. We show that standard cross-entropy assuming
all background as negative labels leads to biased learning
and poor optimisation, likely due to the contributions rep-
resented by large second-order derivatives in the loss. By
ignoring these terms, we present exclusive cross-entropy.
Extensive experiments on nine datasets and two localisation
tasks, detection with YOLLO and segmentation with Unet,
show that we obtain considerable improvements compared
to cross-entropy or focal loss, while often reaching the best
possible accuracy for the model with only 10-40% of anno-
tations present.
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