445 research outputs found

    Alien Registration- Tetreault, M. A. Cecile (Waterville, Kennebec County)

    Get PDF
    https://digitalmaine.com/alien_docs/15658/thumbnail.jp

    Bioinformatic Extraction of Functional Genetic Diversity from Heterogeneous Germplasm Collections for Crop Improvement

    Get PDF
    Efficient utilization of genetic variation in plant germplasm collections is impeded by large collection size, uneven characterization of traits, and unpredictable apportionment of allelic diversity among heterogeneous accessions. Distributing compact subsets of the complete collection that contain maximum allelic diversity at functional loci of interest could streamline conventional and precision breeding. Using heterogeneous population samples from Arabidopsis, Populus and sorghum, we show that genomewide single nucleotide polymorphism (SNP) data permits the capture of 3–78 fold more haplotypic diversity in subsets than geographic or environmental data, which are commonly used surrogate predictors of genetic diversity. Using a large genomewide SNP data set from landrace sorghum, we demonstrate three bioinformatic approaches to extract functional genetic diversity. First, in a “candidate gene” approach, we assembled subsets that maximized haplotypic diversity at 135 putative lignin biosynthetic loci, relevant to biomass breeding programs. Secondly, we applied a keyword search against the Gene Ontology to identify 1040 regulatory loci and assembled subsets capturing genomewide regulatory gene diversity, a general source of phenotypic variation. Third, we developed a machine-learning approach to rank semantic similarity between Gene Ontology term definitions and the textual content of scientific publications on crop adaptation to climate, a complex breeding objective. We identified 505 sorghum loci whose defined function is semantically-related to climate adaptation concepts. The assembled subsets could be used to address climatic pressures on sorghum production. To face impending agricultural challenges and foster rapid extraction and use of novel genetic diversity resident in heterogeneous germplasm collections, whole genome resequencing efforts should be prioritized

    The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans

    Get PDF
    The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in the line leading to humans, and since it suppresses dendritic branching it may be involved in the distinctive VEN morphology

    Using system and user performance features to improve emotion detection in spoken tutoring dialogs

    Get PDF
    In this study, we incorporate automatically obtained system/user performance features into machine learning experiments to detect student emotion in computer tutoring dialogs. Our results show a relative improvement of 2.7% on classification accuracy and 8.08% on Kappa over using standard lexical, prosodie, sequential, and identification features. This level of improvement is comparable to the performance improvement shown in previous studies by applying dialog acts or lexical/prosodic-/discourse- level contextual features

    In search of Nemesis

    Get PDF
    The parallax of all stars of visual magnitude greater than about 6.5 has already been measured. If Nemesis is a main-sequence star 1 parsec away, this requires Nemesis's mass to be less than about 0.4 solar masses. If it were less than about 0.05 solar masses its gravity would be too weak to trigger a comet storm. If Nemesis is on the main sequence, this mass range requires it to be a red dwarf. A red dwarf companion would probably have been missed by standard astronomical surveys. Nearby stars are usually found because they are bright or have high proper motion. However, Nemesis's proper motion would now be 0.01 arcsec/yr, and if it is a red dwarf its magnitude is about 10 - too dim to attract attention. Unfortunately, standard four-color photometry does not distinguish between red dwarfs and giants. So although surveys such as the Dearborn Red Star Catalog list stars by magnitude and spectral type, they do not identify the dwarfs. Every star of the correct spectral type and magnitude must be scrutinized. Our candidate list is a hybrid; candidate red stars are identified in the astrometrically poor Dearborn Red Star Catalog and their positions are corrected using the Hubble Guide Star Catalog. When errors in the Dearborn catalog make it impossible to identify the corresponding Hubble star, the fields are split so that we have one centering on each possible candidate. We are currently scrutinizing 3098 fields, which we believe contain all possible red dwarf candidates in the northern hemisphere. Since our last report the analysis and database software has been completely rebuilt to take advantage of updated hardware, to make the data more accessible, and to implement improved methods of data analysis. The software is now completed and we are eliminating stars every clear night

    Biochemical Specificity of von Economo Neurons in Hominoids

    Get PDF
    Objectives: Von Economo neurons (VENs) are defined by their thin, elongated cell body and long dendrites projecting from apical and basal ends. These distinctive neurons are mostly present in anterior cingulate (ACC) and fronto-insular (FI) cortex, with particularly high densities in cetaceans, elephants, and hominoid primates (i.e., humans and apes). This distribution suggests that VENs contribute to specializations of neural circuits in species that share both large brain size and complex social cognition, possibly representing an adaptation to rapidly relay socially-relevant information over long distances across the brain. Recent evidence indicates that unique patterns of protein expression may also characterize VENs, particularly involving molecules that are known to regulate gut and immune function. Methods: In this study, we used quantitative stereologic methods to examine the expression of three such proteins that are localized in VENs—activating-transcription factor 3 (ATF3), interleukin 4 receptor (IL4Rα), and neuromedin B (NMB). We quantified immunoreactivity against these proteins in different morphological classes of ACC layer V neurons of hominoids. Results:Among the different neuron types analyzed (pyramidal, VEN, fork, enveloping, and other multipolar), VENs showed the greatest percentage that displayed immunostaining. Additionally, a higher proportion of VENs in humans were immunoreactive to ATF3, IL4Rα, and NMB than in other apes. No other ACC layer V neuron type displayed a significant species difference in the percentage of immunoreactive neurons. Conclusions: These findings demonstrate that phylogenetic variation exists in the protein expression profile of VENs, suggesting that humans might have evolved biochemical specializations for enhanced interoceptive sensitivity

    Global Responses of Resistant and Susceptible Sorghum (\u3ci\u3eSorghum bicolor\u3c/i\u3e) to Sugarcane Aphid (\u3ci\u3eMelanaphis sacchari\u3c/i\u3e)

    Get PDF
    The sugarcane aphid (Melanaphis sacchari) has emerged as a significant pest for sorghum. The use of sugarcane aphid-resistant sorghum germplasm with integrated pest management strategies appears to be an excellent solution to this problem. In this study, a resistant line (RTx2783) and a susceptible line (A/BCK60) were used to characterize the differences in plant responses to the sugarcane aphid through a series of experiments, which examined global sorghum gene expression, aphid feeding behavior and inheritance of aphid resistance. The global transcriptomic responses to sugarcane aphids in resistant and susceptible plants were identified using RNA-seq and compared to the expression profiles of uninfested plants at 5, 10, and 15 days post-infestation. The expression of genes from several functional categories were altered in aphid-infested susceptible plants, which included genes related to cell wall modification, photosynthesis and phytohormone biosynthesis. In the resistant line, only 31 genes were differentially expressed in the infested plants relative to uninfested plants over the same timecourse. However, network analysis of these transcriptomes identified a co-expression module where the expression of multiple sugar and starch associated genes were repressed in infested resistant plants at 5 and 10 days. Several nucleotide-binding-site, leucine-rich repeat (NBS-LRR) and disease resistance genes similar to aphid resistance genes identified in other plants are identified in the current study which may be involved in sugarcane aphid resistance. The electrical penetration graph (EPG) results indicated that sugarcane aphid spent approximately twice as long in non-probing phase, and approximately a quarter of time in phloem ingestion phase on the resistant and F1 plants compared to susceptible plant. Additionally, network analysis identified a phloem protein 2 gene expressed in both susceptible and resistant plants early (day 5) of infestation, which may contribute to defense against aphid feeding within sieve elements. The resistant line RTx2783 displayed both antixenosis and antibiosis modes of resistance based on EPG and choice bioassays between susceptible, resistant and F1 plants. Aphid resistance from RTx2783 segregated as a single dominant locus in the F2 generation, which will enable breeders to rapidly develop sugarcane aphid-resistant hybrids using RTx2783 as the male parent

    Efficacy and safety of methylprednisolone sodium succinate in acute spinal cord injury: a systematic review

    Get PDF
    Study Design: Systematic review and meta-analysis. Objective: The objective of this study was to conduct a systematic review to assess the comparative effectiveness and safety of high-dose methylprednisolone sodium succinate (MPSS) versus no pharmacological treatment in patients with traumatic spinal cord injury (SCI). Methods: A systematic search was performed in PubMed and the Cochrane Collaboration Library for literature published between January 1956 and June 17, 2015. Included studies ere critically appraised, and Grades of Recommendation Assessment, Development and Evaluation methods were used to determine the overall quality of evidence for primary outcomes. Previous systematic reviews on this topic were collated and evaluated using the Assessment of Multiple Systematic Reviews scoring system. Results: The search yielded 723 citations, 13 of which satisfied inclusion criteria. Among these, 6 were primary research articles and 7 were previous systematic reviews. Based on the included research articles, there was moderate evidence that the 24-hour NASCIS II (National Acute Spinal Cord Injury Studies) MPSS regimen has no impact on long-term neurological recovery when all postinjury time points are considered. However, there is also moderate evidence that subjects receiving the same MPSS regimen within 8 hours of injury achieve an additional 3.2 points (95% confidence interval = 0.10 to 6.33; P = .04) of motor recovery compared with patients receiving placebo or no treatment. Conclusion: Although safe to administer, a 24-hour NASCIS II MPSS regimen, when all postinjury time points are considered, has no impact on indices of long-term neurological recovery. When commenced within 8 hours of injury, however, a high-dose 24-hour regimen of MPSS confers a small positive benefit on long-term motor recovery and should be considered a treatment option for patients with SCI
    corecore