82 research outputs found

    Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells

    Get PDF
    BACKGROUND: Engineered nanoparticles (NP) are being developed for inhaled drug delivery. This route is non-invasive and the major target; alveolar epithelium provides a large surface area for drug administration and absorption, without first pass metabolism. Understanding the interaction between NPs and target cells is crucial for safe and effective NP-based drug delivery. We explored the differential effect of neutral, cationic and anionic polystyrene latex NPs on the target cells of the human alveolus, using primary human alveolar macrophages (MAC) and primary human alveolar type 2 (AT2) epithelial cells and a unique human alveolar epithelial type I-like cell (TT1). We hypothesized that the bioreactivity of the NPs would relate to their surface chemistry, charge and size as well as the functional role of their interacting cells in vivo. METHODS: Amine- (ANP) and carboxyl- surface modified (CNP) and unmodified (UNP) polystyrene NPs, 50 and 100 nm in diameter, were studied. Cells were exposed to 1–100 μg/ml (1.25-125 μg/cm(2); 0 μg/ml control) NP for 4 and 24 h at 37 °C with or without the antioxidant, N-acetyl cysteine (NAC). Cells were assessed for cell viability, reactive oxygen species (ROS), oxidised glutathione (GSSG/GSH ratio), mitochondrial integrity, cell morphology and particle uptake (using electron microscopy and laser scanning confocal microscopy). RESULTS: ANP-induced cell death occurred in all cell types, inducing increased oxidative stress, mitochondrial disruption and release of cytochrome C, indicating apoptotic cell death. UNP and CNP exhibited little cytotoxicity or mitochondrial damage, although they induced ROS in AT2 and MACs. Addition of NAC reduced epithelial cell ROS, but not MAC ROS, for up to 4 h. TT1 and MAC cells internalised all NP formats, whereas only a small fraction of AT2 cells internalized ANP (not UNP or CNP). TT1 cells were the most resistant to the effects of UNP and CNP. CONCLUSION: ANP induced marked oxidative damage and cell death via apoptosis in all cell types, while UNP and CNP exhibited low cytotoxicity via oxidative stress. MAC and TT1 cell models show strong particle-internalization compared to the AT2 cell model, reflecting their cell function in vivo. The 50 nm NPs induced a higher bioreactivity in epithelial cells, whereas the 100 nm NPs show a stronger effect on phagocytic cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-015-0091-7) contains supplementary material, which is available to authorized users

    Airway and alveolar epithelial cells in culture

    Get PDF
    Airway and alveolar epithelial cells are daily exposed to large amounts of inhaled air that contains pollutants and pathogens. Local epithelial defence systems are in place to prevent injury, but epithelial cells also play a central role in various lung diseases. The function of these cells in health and disease can be studied in human lung tissue, in animal models and using cell culture. Cell culture offers the important advantage that isolated cells can be exposed under controlled conditions to disease-relevant stimuli, and can be manipulated using a variety of techniques. In this article, we introduce the principles of culturing airway and alveolar epithelial cells, as well as recent new and future developments. Advantages and disadvantages of using cell lines and primary cells isolated from tissue are discussed. In addition, culture of epithelial cells at the physiologically relevant air-liquid interface is described, as well as new culture systems such as lung organoids and the microfluidics lung-on-chip. Finally, genetic editing of cultured cells is discussed. By providing an introduction into epithelial cell culture, we aim to provide a better insight into how these cultures can be used to study the role of epithelial cells in health, disease pathogenesis, drug discovery and evaluation, inhalation toxicology, as well as regenerative medicine

    Functional consequences for primary human alveolar macrophages following treatment with long, but not short, multiwalled carbon nanotubes

    Get PDF
    Sinbad Sweeney, Davide Grandolfo, Pakatip Ruenraroengsak, Teresa D TetleyLung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College London, London, UKPurpose: Multiwalled carbon nanotubes (MWCNTs) are a potential human health hazard, primarily via inhalation. In the lung, alveolar macrophages (AMs) provide the first line of immune cellular defense against inhaled materials. We hypothesized that, 1 and 5 days after treating AMs with short (0.6 µm in length; MWCNT-0.6 µm) and long (20 µm in length; MWCNT-20 µm) MWCNTs for 24 hours, AMs would exhibit increased markers of adverse bioreactivity (cytokine release and reactive oxygen species generation) while also having a modified functional ability (phagocytosis and migration).Methods: Primary human AMs were treated with short and long MWCNTs for 24 hours, 1 and 5 days after which toxicity end points, including cell death, reactive oxygen species generation, and inflammatory mediator release, were measured. AM functional end points involving phagocytic ability and migratory capacity were also measured.Results: AM viability was significantly decreased at 1 and 5 days after treatment with MWCNT-20 µm, while superoxide levels and inflammatory mediator release were significantly increased. At the same time, there was reduced phagocytosis and migratory capacity alongside increased expression of MARCO; this coincided with frustrated phagocytosis observed by scanning electron microscopy. In contrast, the adverse bioreactivity of the shorter MWCNT-0.6 µm with AMs (and any resulting reduction in AM functional ability) was substantially less marked or absent altogether.Conclusion: This study shows that after 24-hour treatment with long, but not short, MWCNTs, AM function is severely affected up to 5 days after the initial exposure. This has potentially significant pathophysiological consequences for individuals who may be intentionally (via therapeutic applications) or unintentionally exposed to these nanomaterials.Keywords: nanotechnology, MWCNTs, alveolar macrophages, cytokines, phagocytosis, bioreactivit

    Variability in bioreactivity linked to changes in size and zeta potential of diesel exhaust particles in human immune cells

    Get PDF
    Acting as fuel combustion catalysts to increase fuel economy, cerium dioxide (ceria, CeO(2)) nanoparticles have been used in Europe as diesel fuel additives (Envirox™). We attempted to examine the effects of particles emitted from a diesel engine burning either diesel (diesel exhaust particles, DEP) or diesel doped with various concentrations of CeO(2) (DEP-Env) on innate immune responses in THP-1 and primary human peripheral blood mononuclear cells (PBMC). Batches of DEP and DEP-Env were obtained on three separate occasions using identical collection and extraction protocols with the aim of determining the reproducibility of particles generated at different times. However, we observed significant differences in size and surface charge (zeta potential) of the DEP and DEP-Env across the three batches. We also observed that exposure of THP-1 cells and PBMC to identical concentrations of DEP and DEP-Env from the three batches resulted in statistically significant differences in bioreactivity as determined by IL-1β, TNF-α, IL-6, IFN-γ, and IL-12p40 mRNA (by qRT-PCR) and protein expression (by ELISPOT assays). Importantly, bioreactivity was noted in very tight ranges of DEP size (60 to 120 nm) and zeta potential (−37 to −41 mV). Thus, these physical properties of DEP and DEP-Env were found to be the primary determinants of the bioreactivity measured in this study. Our findings also point to the potential risk of over- or under- estimation of expected bioreactivity effects (and by inference of public health risks) from bulk DEP use without taking into account potential batch-to-batch variations in physical (and possibly chemical) properties

    Modulation of human macrophage responses to mycobacterium tuberculosis by silver nanoparticles of different size and surface modification

    No full text
    Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications

    In vitro modelling of alveolar repair at the air-liquid interface using alveolar epithelial cells derived from human induced pluripotent stem cells

    Get PDF
    Research on acute and chronic lung diseases would greatly benefit from reproducible availability of alveolar epithelial cells (AEC). Primary alveolar epithelial cells can be derived from human lung tissue but the quality of these cells is highly donor dependent. Here, we demonstrated that culture of EpCAM+ cells derived from human induced pluripotent stem cells (hiPSC) at the physiological air-liquid interface (ALI) resulted in type 2 AEC-like cells (iAEC2) with alveolar characteristics. iAEC2 cells expressed native AEC2 markers (surfactant proteins and LPCAT-1) and contained lamellar bodies. ALI-iAEC2 were used to study alveolar repair over a period of 2 weeks following mechanical wounding of the cultures and the responses were compared with those obtained using primary AEC2 (pAEC2) isolated from resected lung tissue. Addition of the Wnt/β-catenin activator CHIR99021 reduced wound closure in the iAEC2 cultures but not pAEC2 cultures. This was accompanied by decreased surfactant protein expression and accumulation of podoplanin-positive cells at the wound edge. These results demonstrated the feasibility of studying alveolar repair using hiPSC-AEC2 cultured at the ALI and indicated that this model can be used in the future to study modulation of alveolar repair by (pharmaceutical) compounds

    Cerium dioxide nanoparticles exacerbate house dust mite induced type II airway inflammation

    Get PDF
    Background Nanomaterial inhalation represents a potential hazard for respiratory conditions such as asthma. Cerium dioxide nanoparticles (CeO2NPs) have the ability to modify disease outcome but have not been investigated for their effect on models of asthma and inflammatory lung disease. The aim of this study was to examine the impact of CeO2NPs in a house dust mite (HDM) induced murine model of asthma. Results Repeated intranasal instillation of CeO2NPs in the presence of HDM caused the induction of a type II inflammatory response, characterised by increased bronchoalveolar lavage eosinophils, mast cells, total plasma IgE and goblet cell metaplasia. This was accompanied by increases in IL-4, CCL11 and MCPT1 gene expression together with increases in the mucin and inflammatory regulators CLCA1 and SLC26A4. CLCA1 and SLC26A4 were also induced by CeO2NPs + HDM co-exposure in air liquid interface cultures of human primary bronchial epithelial cells. HDM induced airway hyperresponsiveness and airway remodelling in mice were not altered with CeO2NPs co-exposure. Repeated HMD instillations followed by a single exposure to CeO2NPs failed to produce changes in type II inflammatory endpoints but did result in alterations in the neutrophil marker CD177. Treatment of mice with CeO2NPs in the absence of HDM did not have any significant effects. RNA-SEQ was used to explore early effects 24 h after single treatment exposures. Changes in SAA3 expression paralleled increased neutrophil BAL levels, while no changes in eosinophil or lymphocyte levels were observed. HDM resulted in a strong induction of type I interferon and IRF3 dependent gene expression, which was inhibited with CeO2NPs co-exposure. Changes in the expression of genes including CCL20, CXCL10, NLRC5, IRF7 and CLEC10A suggest regulation of dendritic cells, macrophage functionality and IRF3 modulation as key early events in how CeO2NPs may guide pulmonary responses to HDM towards type II inflammation. Conclusions CeO2NPs were observed to modulate the murine pulmonary response to house dust mite allergen exposure towards a type II inflammatory environment. As this type of response is present within asthmatic endotypes this finding may have implications for how occupational or incidental exposure to CeO2NPs should be considered for those susceptible to disease

    How Human Brucellosis Incidence in Urban Kampala Can Be Reduced Most Efficiently? A Stochastic Risk Assessment of Informally-Marketed Milk

    Get PDF
    In Kampala, Uganda, studies have shown a significant incidence of human brucellosis. A stochastic risk assessment involving two field surveys (cattle farms and milk shops) and a medical record survey was conducted to assess the risk of human brucellosis infection through consumption of informally marketed raw milk potentially infected with Brucella abortus in Kampala and to identify the best control options.In the cattle farm survey, sera of 425 cows in 177 herds in the Kampala economic zone were sampled and tested for brucellosis using a competitive enzyme-linked immunosorbent assay (CELISA). Farmers were interviewed for dairy information. In the milk shop surveys, 135 milk sellers in the urban areas were interviewed and 117 milk samples were collected and tested using an indirect enzyme-linked immunosorbent assay (IELISA). A medical record survey was conducted in Mulago National Referral Hospital for serological test results. A risk model was developed synthesizing data from these three surveys. Possible control options were prepared based on the model and the reduction of risk was simulated for each scenario. Overall, 12.6% (6.8-18.9: 90%CI) of informally marketed milk in urban Kampala was contaminated with B.abortus at purchase and the annual incidence rate was estimated to be 5.8 (90% CI: 5.3-6.2) per 10,000 people. The best control option would be the construction of a milk boiling centre either in Mbarara, the largest source of milk, or in peri-urban Kampala and to ensure that milk traders always sell milk to the boiling centre; 90% success in enforcing these two options would reduce risk by 47.4% (21.6-70.1: 90%CI) and 82.0% (71.0-89.0: 90%CI), respectively.This study quantifies the risk of human brucellosis infection through informally marketed milk and estimates the incidence rate in Kampala for the first time; risk-based mitigation strategies are outlined to assist in developing policy

    Increased Levels of Inflammatory Cytokines and Endothelin-1 in Alveolar Macrophages from Patients with Chronic Heart Failure

    Get PDF
    BACKGROUND: Pathophysiological interactions between heart and lungs in heart failure (HF) are well recognized. We investigated whether expression of different factors known to be increased in the myocardium and/or the circulation in HF is also increased in alveolar macrophages in HF. METHODOLOGY/PRINCIPAL FINDINGS: Lung function, hemodynamic parameters, gene expression in alveolar macrophages, and plasma levels in the pulmonary and femoral arteries of HF patients (n = 20) were compared to control subjects (n = 16). Our principal findings were: (1) Lung function was significantly lower in HF patients compared to controls (P<0.05). (2) mRNA levels of ET-1, tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) were increased in alveolar macrophages from HF patients. (3) Plasma levels of ET-1, TNFα, IL-6 and MCP-1 were significantly increased in HF patients, whereas our data indicate a net pulmonary release of MCP-1 into the circulation in HF. CONCLUSIONS/SIGNIFICANCE: Several important cytokines and ET-1 are induced in alveolar macrophages in human HF. Further studies should clarify whether increased synthesis of these factors affects pulmonary remodeling and, directly or indirectly, adversely affects the failing myocardium
    • …
    corecore